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Abstract
 Taurine (TAU) is the most abundant free amino acid in the human body. High concentrations of 
this amino acid are found in tissues such as the skeletal muscle, brain, and kidney. Recently, a focus has 
emerged on the effects of TAU on cellular mitochondria. It has been found that TAU could positively af-
fect this organelle by enhancing mitochondrial membrane potential, increasing ATP levels, and mitigating 
mitochondria-mediated ROS formation. The current study aimed to evaluate the effect of a wide range 
of TAU concentrations (0.01 mM-1000 mM) on mitochondrial function. Mice liver mitochondria were 
isolated and exposed to different concentrations of TAU (30 min). Several indices, including mitochon-
drial depolarization, dehydrogenases activity, permeabilization, and ATP content, were monitored. It was 
found that TAU supplementation significantly enhanced parameters such as mitochondrial ATP levels and 
mitochondrial membrane potential in comparison with the control group. Moreover, TAU prevented Ca2+-
induced mitochondrial permeabilization. This amino acid revealed no significant adverse effect on isolated 
mitochondria even at very high and supra-physiological concentrations (e.g., 100, 250, and 500 mM). 
These data suggest TAU as an ideal and safe agent to protect mitochondria against toxic insults or regulat-
ing cellular function in different mitochondria-linked disorders.
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1. Introduction
 Taurine (TAU) is a β-amino acid abun-
dantly found in the human body. Skeletal muscle, 
heart, brain, and kidneys contain a high TAU level 
(1). Several pharmacological properties have been 
attributed to TAU (2-5). TAU also exhibits cyto-
protective effects against a wide range of xeno-
biotics as well as several human diseases (4-12). 
However, the mechanisms of cytoprotection pro-

vided by this amino acid are mostly unknown. Re-
cently, a focus has emerged on the effects of TAU 
on cellular mitochondria (1, 13-15). Interestingly, 
it has been found that TAU also incorporates es-
sential mitochondrial components, such as transfer 
RNA (tRNA) (15-17). tRNA plays a pivotal role 
in transferring amino acids to ribosomes and the 
synthesis of mitochondrial proteins (e.g., electron 
transport complexes) (4, 18). On the other hand, 
several diseases have been identified, which are 
directly associated with the lack of mitochondrial 
tRNA taurine modification (19, 20). Hence, this 
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amino acid is a new candidate for drug design 
against several human diseases. Therefore, it is es-
sential to evaluate the safety of TAU in biological 
systems, especially on cellular mitochondria as the 
principal target of action of this amino acid.
 Taurine reaches high concentrations in 
some tissues, such as skeletal muscle. However, 
there is no investigation on the effects of different 
and mostly supraphysiological concentrations of 
TAU on cellular mitochondria as a vital target for 
this amino acid. The current study was designed 
to evaluate the effect of a wide range of TAU con-
centrations (0.01 mM-1000 mM) on isolated mi-
tochondria. Several mitochondrial indices were 
monitored to evaluate if any deterioration in mito-
chondrial function occurs in the presence of TAU. 
The data could estimate the safety of this amino 
acid on cellular mitochondria, help to protect this 
organelle against toxic insults, and finally regulat-
ing and improving cellular function in different 
mitochondria-linked disorders.

2. Material and method 
2.1. Chemicals
 Trichloroacetic acid (TCA), sodium ac-
etate, thiobarbituric acid (TBA), mannitol, phos-
phoric acid, sucrose, ethylene diamine tetra-
acetic acid (EDTA), calcium anhydride, 2 amino  
2-hydroxymethyl-propane-1,3-diol-hydrochloride 
(Tris-HCl), and essentially fatty acid-free bovine 
serum albumin (BSA), were obtained from Merck 
(Darmstadt, Germany). Taurine (2-aminoethane-
sulfonic acid), rhodamine 123, and methyl tetrazo-
lium (MTT) were purchased from Sigma-Aldrich 
(St. Louis, MO, USA).

2.2. Animals
 Male C57BL6/J mice (n=60; 20-25 g 
weight) were obtained from Shiraz University 
of Medical Sciences, Shiraz, Iran. Animals were 
housed in plastic cages over wood-chip bedding. 
There was an environmental temperature of 23±1 
ºC and a 12L: 12D photoschedule along with a 
≈40% of relative humidity. Animals were allowed 
free access to tap water and a regular chow diet 
(Behparvar®, Tehran, Iran). The experiments were 
done in compliance with the guidelines for care 
and use of experimental animals approved by the 

ethics commission at Shiraz University of Medical 
Sciences (#1396-01-36-16627).

2.3. Mice liver mitochondria isolation
 Mitochondria were isolated from mice 
liver based on previously reported procedures 
based on differential centrifugation (21-23). First, 
the liver was washed and minced in an ice-cold 
(4 °C) isolation buffer medium (220 mM sucrose, 
0.5 mM EGTA, 75 mM mannitol, 2 mM HEPES, 
0.1% BSA, and pH=7.4). The minced liver tissue 
was transported into a fresh isolation buffer at a 
10:1 buffer to tissue ratio (v: w). Samples were 
homogenized using a PYREX® Potter-Elvehjem 
tissue homogenizer. As mentioned, cellular mi-
tochondria were isolated based on the method of 
differential centrifugation (21, 24). First, intact 
cells and nuclei were pelleted (1000 g, 20 min, 
4 ºC); second; the supernatant was collected and 
centrifuged (10,000 g, 20 min 4 ºC). The recent 
step was repeated at least three times to increase 
mitochondrial yield and purity. Finally, mitochon-
drial pellets were re-suspended in the incubation 
buffer medium (10: 1 v: w buffer: mitochondrial 
pellet) containing 225 mM sucrose, 75 mM man-
nitol, 2 mM HEPES, and 0.5 mM EGTA, pH = 
7.4, except for the mitochondrial preparations used 
to assess mitochondrial depolarization and mito-
chondrial permeabilization, which were suspended 
in mitochondrial depolarization assay buffer (225 
mM Sucrose, 2 mM MgCl2, 10 mM KCl, 75 mM 
Mannitol, 5 mM KH2PO4, 50 μM EGTA, and 10 
mM HEPES, pH=7.2) and swelling buffer (250 
mM sucrose,  2 mM HEPES, 0.5 mM KH2PO4, 
5 mM Sodium succinate; pH=7.4) (21, 24). Sam-
ples, protein concentrations were assessed by the 
Bradford method using BSA as a standard (25)

2.4. Mitochondrial depolarization assay
 Rhodamine 123 was used as a cationic 
fluorescent probe to estimate mitochondrial de-
polarization (24, 26-28). Rhodamine 123, accu-
mulates in the matrix of functional mitochondria. 
When mitochondria are depolarized and damaged, 
the extent of rhodamine 123 in the medium is high 
(21, 29-31). Briefly, 1 mL of the mitochondrial 
fractions (1 mg protein/mL in the depolarization 
assay buffer) were incubated with 10 µL of rhoda-
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mine 123 (10 µM Final concentration; 15 minutes; 
in the dark; with continuous shaking) (32). After-
ward, samples were centrifuged (16,000 g, 2 min, 
4 ºC) and the fluorescence intensity of the superna-
tant was assessed (FLUOstar Omega® multifunc-
tional microplate reader, BMG Labtech®, Germa-
ny, λ excitation=485 nm and λ emission=525 nm) 
(21, 33).

2.5. Mitochondrial permeabilization
 The light scattering method was used to 
estimate the mitochondrial permeabilization (24, 
26, 28, 34). Briefly, isolated mitochondria (0.5 mg 
protein/mL) were suspended in the pre-warmed 
(37 ºC) swelling buffer (2 mM HEPES, 250 mM 
sucrose,  4.2 mM sodium succinate, 0.5 mM KH-
2PO4; pH=7.4). The mitochondrial permeability 
transition was induced by adding calcium (Ca2+ 

100 µM) and assessed by monitoring the absor-
bance changes at λ=540 nm (EPOCH plate read-
er, Bio-Tek® Instruments, Highland Park, USA) 
(21, 33). A decrease in the absorbance implies an 
increase in mitochondrial volume and organelle 
swelling (13, 21, 33).

2.6. Mitochondrial dehydrogenases activity
 A colorimetric method using methyl tetra-
zolium (MTT) was used to estimate mitochondrial 
dehydrogenase activity (35-39). Briefly, mito-
chondrial suspension in a buffer containing 1 mM 
EDTA, 10 mM Tris-HCl, and 320 mM sucrose, 
pH=7.4, was treated with 40 µL of MTT (0.4% w: 

v in buffer) and incubated for 15 minutes (37 °C, in 
the dark). Then, samples were centrifuged (12,000 
g, 5 min), and the purple formazan crystals pellets 
were dissolved in DMSO (1 ml). Samples were 
centrifuged again (12000 g, 5 min), and 100 µl of 
the supernatant was added to 96 well-plate and the 
optical density (OD) at λ=570 nm was assessed 
with an EPOCH plate reader (BioTek® Instru-
ments, Highland Park, USA) (40, 41).

2.7. Mitochondrial ATP
 A luciferase–luciferin-based kit from 
Promega™ (ENLITEN®) was used to assess mi-
tochondrial ATP content (42). Buffer solutions 
and samples and were prepared based on the EN-
LITEN® kit pieces of advice. Briefly, one millili-
ter of mitochondria preparation (10 mg protein/ml) 
was treated with TCA (0.1%) and incubated on ice 
for 5 minutes. Finally, 100 µL of the supernatant 
was treated with 100 µL of the kit content, and the 
luminescence intensity was measured at λ=560 nm 
(FLUOstar Omega® multifunctional microplate 
reader). For the standardization of data, samples 
protein concentrations were determined by the 
Bradford method (43).

2.8. Statistical analysis
 Data are represented as the mean±SD. 
Data comparison was made by the one-way analy-
sis of variance (ANOVA) with Tukey’s multiple 
comparisons as the post hoc test. Differences were 
considered statistically significant when P<0.05.
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Figure 1. Mice liver mitochondrial dehydrogenases activity in a medium containing increasing concentrations of  
taurine. Data are represented as mean±SD (n=7). Asterisks indicate significantly different as compared with the con-
trol group (0 mM taurine) (*P<0.05, **P<0.01, ***P<0.001).ns: not significant as compared with the control group 
(0 mM taurine).
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3. Results 
 Mitochondrial dehydrogenases activity 
was evaluated in a medium containing increasing 
concentrations of TAU (Figure 1). It was found 
that concentrations between 0.05 to 40 mM of this 
amino acid significantly increased mitochondrial 
dehydrogenases activity. On the other hand, even 
very high concentrations of TAU (100, 250, and 
500 mM) had no adverse effects on mitochondrial 
dehydrogenases activity in comparison with the 

control group (0 mM TAU) (Figure 1). Finally, 
it was found that 1000 mM of TAU adversely af-
fected mitochondrial dehydrogenases activity and 
significantly decreased this parameter (Figure 1).
 Concentrations between 0.05 mM-20 mM 
of TAU positively enhanced the mitochondrial ca-
pability to capture rhodamine 123 (Mitochondrial 
polarization) (Figure 2). On the other hand, con-
centrations of TAU between 100-250 mM had no 
significant difference with the control group (Fig-
ure 2). It was found that 500- and 1000-mM TAU 
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Figure 2. Mitochondrial depolarization in the presence of different taurine concentrations. Data are represented 
as mean±SD (n=7). Asterisks indicate significantly different as compared with the control group (0 mM taurine) 
(*P<0.05, **P<0.01, ***P<0.001). ns: not significant as compared with the control group (0 mM taurine).
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Figure 3. Calcium (Ca2+)-induced mitochondrial swelling in the taurine-containing medium. Data are represented 
as mean±SD (n=7). Asterisks indicate significantly different as compared with the control group (0 mM taurine) 
(*P<0.05, **P<0.01, ***P<0.001). ns: not significant as compared with the control group (0 mM taurine).
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significantly depolarized isolated liver mitochon-
dria (Figure 2).
 TAU (0.05-250 mM) administration sig-
nificantly decreased Ca2+-induced mitochondrial 
permeabilization and swelling (Figure 3). On the 
other hand, the concentrations of 0.05, 500, and 
1000 mM of TAU had no significant effect on mi-
tochondrial permeabilization in the current study 
(Figure 3).
 The effects of TAU on mitochondrial ATP 
production were also evaluated (Figure 4). It was 
found that TAU (0.05-100 mM) significantly en-
hanced mitochondrial ATP levels (Figure 4). On 
the other hand, the effects of 250 and 500 mM of 
TAU was not significantly different as compared 
with the control group (0 mM TAU) (Figure 4). 
It was also found that 1000 mM TAU could sig-
nificantly deteriorate mitochondrial ATP synthesis 
(Figure 4).

4. Discussion
 Since its introduction in 1827, numer-
ous investigations have been done on the physi-
ological and pharmacological properties of taurine 
(TAU) (44). Interestingly, the Springer publishing 
company publishes a book series on the investi-
gations about this amino acid (e.g., https://www.
springer.com/gp/book/9789811380228). The ca-
pacity of the human liver for TAU synthesis is 
low (1). Therefore, body TAU is mainly provided 

by dietary sources. TAU concentration reaches to 
high levels in tissues such as cardiac and skeletal 
muscle (e.g., 6.5 mmol/g wet weight) (45, 46).
 A wide range of therapeutic effects has 
been attributed to this semi-amino acid (5, 47). 
The effects of TAU on several disorders such as 
cardiovascular complications, metabolic diseases, 
hepatic function, CNS disorders, immune sys-
tem dysregulations, inflammatory disorders, and  
renal impairment have been repeatedly investi-
gated (48).
 Several physiological roles, including the 
adjustment of cellular osmotic pressure, regula-
tion of cytoplasmic Ca2+ homeostasis, enzyme 
activity, cell signaling, as well as stabilizing lipid 
membranes, have been proposed for TAU (49, 50).
On the other hand, some mechanisms have been 
proposed for the cytoprotection provided by TAU. 
Regulation of cellular Ca2+ homeostasis is a piv-
otal mechanism for TAU (51, 52). It has been docu-
mented that TAU effectively decreased the release 
of Ca2+ from the endoplasmic reticulum (ER) as 
its primary cellular source and prevent ER stress 
(53-56). On the other hand, another exciting mech-
anism for TAU in cellular Ca2+ homeostasis is 
mediated through the effects of this amino acid on 
mitochondria (57, 58). TAU is actively transported 
to the cytoplasm and finally to the mitochondrial 
matrix, which is also a transporter-mediated phe-
nomenon (1, 18, 59). Some investigations also 
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Figure 4. Mitochondrial ATP level in the presence of taurine. Data are represented as mean±SD (n=7). Asterisks in-
dicate significantly different as compared with the control group (0 mM taurine) (*P<0.05, **P<0.01, ***P<0.001).
ns: not significant as compared with the control group (0 mM taurine).
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