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Abstract
 Mitochondria are cellular power plants known as essential organelles for energy (ATP) metabo-
lism. However, today it is evident that various vital compounds are partially or exclusively synthesized in 
mitochondria. Moreover, this organelle plays a pivotal role in essential processes such as cell death. The 
isolated mitochondrion is an excellent experimental model for evaluating the role of mitochondria in the 
pathogenesis of diseases. Various in vitro and in vivo experimental models have been developed to study 
mitochondria. On the other hand, some alternative models could also help decrease the use of animal 
models. In the current study, we compared the response of mitochondria isolated from mouse liver, Sac-
charomyces cerevisiae (S. cerevisiae), and potato tuber to various concentrations of calcium (Ca2+) as a 
robust mitochondrial disturbing agent. The current study found that significant mitochondrial depolariza-
tion, decreased ATP levels, mitochondrial permeabilization, and decreased mitochondrial dehydrogenases 
activity were found in all isolated mitochondrial preparations. No significant difference between mouse 
liver, S. cerevisiae, and potato tuber mitochondria were detected in experiments carried out in the current 
investigation. We are aware that mitochondria from different species have a huge structural and enzymatic 
variance. Hence, these models could just estimate the effect of xenobiotics in biological systems. However, 
the data derived from this study could finally help to decrease the use of experimental animals and provide 
new approaches for evaluating mitochondrial function.

Keywords: Alternative toxicology models, ATP, Drug development, Mitochondrial disease, Mitochondrial 
impairment.................................................................................................................................
1. Introduction
 Since their identification, a plethora of 
studies have been carried out on mitochondria, 
and many physiological roles have been identi-
fied for these unique organelles. Mitochondria are 
critical organelles that play a wide range of piv-
otal biological actions in eukaryotic cells. Energy 

(ATP) metabolism is the most crucial function of 
these magic organelles (1, 2). However, a plethora 
of other vital processes is entirely or partially oc-
cur in mitochondria. For example, heme synthesis, 
citrate metabolism, folate cycle, and nucleotides 
synthesis produce several amino acids connected 
to mitochondria (3-6).
 Mitochondrial impairment is crucially 
involved in the pathogenesis of a wide range of 
human diseases from cancer, renal diseases, meta-
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bolic disorders, liver diseases, neurodegenerative 
complications, cardiovascular diseases, or aging 
(7-14). All these data indicate that investigating 
mitochondria and finding preventive/pharmaco-
logical interventions to target this organelle could 
considerably change the future of therapeutic strat-
egies for managing various human diseases.
 Isolated mitochondria from various sourc-
es and investigating the mechanism of xenobiot-
ics on these organelles is a routine process in drug 
discovery and development (15-27). These studies 
enhance our understanding of the effects of xeno-
biotics in biological systems. On the other hand, 
evaluating the effects of xenobiotics (e.g., very 
toxic compounds) on these organelles could help 
find appropriate therapeutic options against these 
complications. The cases of phosphine or cyanide 
are well-known examples of these studies. Using 
experimental animals seems to be inevitable for 
such investigations to date. 
 Although mitochondria isolated from 
other species such as the yeast Saccharomyces 
cerevisiae (S. cerevisiae) or potato tuber might 
estimate the adverse effects of xenobiotics on this 
organelle, it should be mentioned that extrapolat-
ing data from in vitro studies to human cases is a 
long and restrict process. Therefore, investigating 
S. cerevisiae or potato mitochondria could only 
estimate the adverse effects of xenobiotics in bio-
logical systems. In the current study, we compared 
the response of mitochondria isolated from mouse 
liver, S. cerevisiae, and potato tuber to calcium 
(Ca2+) as a robust mitochondrial disturbing agent. 
The obtained data could help in the development 
of alternative toxicology testing systems for future 
investigations.

2. Material and methods
2.1. Chemicals and reagents
 Methanol HPLC grade, zymolyase, su-
crose, acetonitrile HPLC grade, bovine serum 
albumin (BSA), rhodamine 123, and trichloro-
acetic acid (TCA) were purchased from Sigma 
(Sigma-Aldrich, St. Louis, MO). Tetrabutylammo-
nium hydroxide, 3-diol-hydrochloride (Tris-HCl), 
4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES), ethylenediaminetetraacetic acid 
(EDTA), calcium anhydride, ethylene glycol-

bis(β-aminoethyl ether)-N, N, N′, N′-tetraacetic 
acid (EGTA), mannitol, potassium phosphate 
monobasic (KH2PO4), potassium hydroxide 
(KOH ), 3-(4, 5-dimethylthiazol-2-yl)-2, the 5-di-
phenyltetrazolium bromide (MTT), and hexadec-
yl-trimethyl-ammonium bromide were obtained 
from Merck (Darmstadt, Germany).

2.2. Animals
 Male BALB/c mice (n=60) weighing 25±2 
g were obtained from Shiraz University of Medical 
Sciences, Shiraz, Iran. Animals were maintained at 
a standard animal house (temperature of 23±1 ºC, 
≈40% relative humidity, 12 h dark/light cycle, and 
adequate ventilation) (28-31). Mice had free access 
to tap water and a standard commercial rodents diet 
(RoyanFeed®, Isfahan, Iran). The institutional lab-
oratory animals care and use committee at Shiraz 
University of Medical Sciences approved all ani-
mal experiments IR.SUMS.REC.1398.371/374). 
S. cerevisiae yeast was cultured based on standard 
protocols in the biotechnology laboratory of Phar-
maceutical Sciences Research Center, Shiraz, Iran. 
The potato was purchased from a retailer in Shiraz, 
Fars, Iran.

2.3. Mitochondria isolation protocols
 Mitochondria were isolated from mice liv-
ers based on the differential centrifugation proto-
col (20, 21, 32-38). For this purpose, the liver was 
excised from deeply anesthetized mice (thiopental, 
80 mg/kg, i.p), washed, and minced in an ice-cold 
solution (220 mM sucrose, 2 mM HEPES, 0.5 mM 
EGTA, 70 mM mannitol, and 0.1 % BSA, pH=7.4). 
Then, the minced tissue was transported into a 
fresh solution (5 mL buffer/1 g of the tissue) and 
homogenized (15, 20, 25, 39-46). At the first round 
of the centrifugation (1000 g, 10 min, 4 ºC), unbro-
ken cells and nuclei were first pelleted. Then, the 
supernatant was further centrifuged at 10000 g for 
10 minutes at 4 ºC to pellet the mitochondria frac-
tion. The second centrifugation step was repeated 
three times (fresh buffer medium each time). The 
final mitochondrial pellet was suspended in a buf-
fer containing 70 mM mannitol, 220 mM sucrose, 
2 mM HEPES, and 0.5 mM EGTA (pH=7.4) (15, 
47-57).
 For isolating S. cerevisiae mitochondria, 
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the culture medium was centrifuged (3000 g, 10 
min, 25 °C), and the yeast pellet was re-suspended 
in pre-warmed DTT buffer (2 mL/g wet weight 
cells) and mixed slowly (approx. 80 rpm) at 30 
°C for 20 min. Then, samples were re-centrifuged 
(3000 g, 5 min, 25 °C), and the pellet was re-
suspend in zymolyase buffer (about 7 mL/g wet 
weight) (58). Cells were harvested by centrifuga-
tion (3000 g for 5 min), and the pellet was washed 
with zymolyase buffer (7 mL/g wet weight) again 
(3000 g for 5 min). Then, the pellet was re-sus-
pend in ice-cold homogenization buffer (5 mL/g 
wet weight, homogenization buffer components 
are identical for liver mitochondria isolation) (58). 
The homogenate was centrifuged (1500 g, 5 min, 
4 °C), and the supernatant was collected. The su-
pernatant was further centrifuged (12,000g for 15 
min, 4°C) to obtain the mitochondrial pellet. The 
recent centrifugation step was repeated three times 
using a fresh isolation buffer medium. Finally, the 
mitochondrial pellet was re-suspend in the incuba-
tion buffer (same for the liver mitochondria) (58).
 For isolating mitochondria from potato 
tuber, peeled potatoes were homogenized using a 
juice extractor, and the extract pH was adjusted to 
7.2 using KOH (2 M) (59). The homogenate was 
stood for 5 min at room temperature for starch sed-
imentation (59). Afterward, the supernatant was 
filtered (cotton and funnel) and centrifuged (3000 
g, 5 min, 4 °C). The supernatant was gathered and 
underwent another set of centrifugation (18000 g, 
10 min, 4 °C). The second centrifugation round 
(18,000 g, 10 min, 4 °C) was repeated three times 
to purify isolated mitochondria (59). Finally, the 
mitochondrial pellet was re-suspended in the in-
cubation buffer (as mentioned for liver mitochon-
dria). 

2.4. Mitochondrial dehydrogenases activity
 The 3-(4, 5-dimethylthiazol-2-yl)-2, the 
5-diphenyltetrazolium bromide (MTT) test was 
used to determine mitochondrial dehydrogenases 
activity in the current study (60-66). Briefly, a mi-
tochondrial suspension (0.5 mg protein/ml) was 
incubated with 0.4% of MTT (37 °C, 30 min, in 
the dark) (25). The product of formazan crystals 
was dissolved in 1 mL of dimethyl sulfoxide (61, 
67-74). Then, samples were centrifuged (5 min, 

3000 g), and the absorbance of λ=570 nm was used 
(EPOCH® plate reader, USA) (23, 65, 75).

2.5. Mitochondrial depolarization
 In the current investigation, mitochondrial 
uptake of the rhodamine 123 was used to evaluate 
mitochondrial depolarization (21, 28, 76-78). For 
this purpose, the mitochondrial fractions (0.5 mg 
protein/mL) were incubated with 10 µM of rhoda-
mine 123 (15 min, in the dark) (33, 72). Afterward, 
samples were centrifuged (15000 g, 1 min, 4 ºC), 
and the fluorescence intensity of the supernatant 
was measured (FLUOstar Omega® plate reader, 
λexcitation=485 nm and λemission=525 nm) (79-82).

2.6. Mitochondrial swelling 
 Analysis of mitochondrial swelling was 
spectrophotometrically estimated through changes 
in light scattering as monitored at λ=540 nm (79, 
83). Briefly, samples of isolated mitochondria (0.5 
mg protein/ml) were added to a 96-well microplate 
reader, and Ca2+ was used as the inducer of mito-
chondrial swelling (84, 85). Then, the absorbance 
was monitored at λ=540 nm for 30 min (EPOCH® 

plate reader, USA). The difference in primary and 
final absorbance was calculated (55, 79, 85-87).

2.7. Mitochondria ATP levels
 Samples (1 mL) of isolated mitochondria 
(1 mg protein/mL) were treated with 50 µL of the 
ice-cooled trichloroacetic acid (50% w: v, 4 ºC), 
incubated on ice for 5 min, and then centrifuged 
(15000 g, 10 min, 4 °C). The supernatant was 
neutralized with 15 µL of 4 M KOH (88). Finally, 
samples were centrifuged (15000 g, 30 min, 4 ºC), 
and 25 µL of the prepared extract was injected into 
an HPLC apparatus (89). The HPLC system con-
sisted of a C-18 column and a UV detector (λ=254 
nm). An isocratic method was used. The mobile 
phase was comprised of KH2PO4 (100 mM, 
pH=7 adjusted with KOH), tetrabutylammonium 
hydroxide (1 mM), and acetonitrile HPLC grade 
(2.5% v: v). The flow rate was 1 mL/min (74, 77, 
88, 90).

2.8. Statistical analysis
 Data are given as mean±SD. The com-
parison of data sets was carried out by the one-
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way analysis of variance (ANOVA) and Tukey’s 
multiple comparisons. A P<0.05 was considered a 
statistically significant difference.

3. Results and discussion
 Several tests were carried out on mito-
chondria isolated from mouse liver, S. cerevisiae, 
and potato tuber. First, the activity of mitochondrial 
dehydrogenases (MTT test) was assessed (Figure 
1). This marker reveals the proper action of several 
dehydrogenases enzymes involved in energy me-
tabolism (91). The complex II of the mitochondrial 
respiratory chain is a well-known dehydrogenase 
that uses MTT to produce the purple formazan 
crystal (91). No significant mitochondrial dehy-
drogenase activity test changes were detected in 
the current study when control S. cerevisiae, liver, 
and potato mitochondria were compared (0 µM of 
Ca2+) (Figure 1). The response of the mitochondri-
al preparations of these species to various levels of 
C2+ was also the same in the MTT test (Figure 1). 

At higher doses of Ca2+ mitochondrial dehydroge-
nases, activities were significantly decreased dose-
dependently (Figure 1). However, the lowest activ-
ity of mitochondrial dehydrogenases was detected 
in S. cerevisiae mitochondria exposed to 200 µM 
of Ca2+ (Figure 1). This finding might indicate that 
S. cerevisiae mitochondria are more susceptible to 
higher Ca2+ concentrations (Figure 1).
 Evaluating mitochondrial permeabiliza-
tion in samples isolated from the species inves-
tigated in the current study revealed significant 
mitochondrial swelling in Ca2+-treated groups 
(Figure 1). However, the dose of 50 µM of Ca2+ 

caused no significant mitochondrial swelling in S. 
cerevisiae mitochondria than in the control group 
(Figure 1).
 The assessment of mitochondrial depolar-
ization revealed dose-dependent impairment in the 
rhodamine 123 capturing ability of mitochondria 
isolated from all species investigated in the current 
study. The maximum amount of mitochondrial de-
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Figure 1. Indices of functionality in mitochondria isolated from S. cerevisiae, potato tuber, and mouse liver.
Data are represented as mean±SD (n=5).
Columns with different alphabetical superscripts are statistically significantly different (P<0.05).
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polarization was detected in Ca2+ concentration 
(Figure 1). There was no significant difference in 
Ca2+-induced mitochondrial depolarization when 
different mitochondrial preparations were com-
pared in the current study (Figure 1). Therefore, 
these data could indicate that these mitochondrial 
preparations could alternatively be used in studies 
about mitochondrial depolarization.
 The current study found that the addition 
of Ca2+ to mitochondrial preparations from differ-
ent species dose-dependently caused a significant 
decrease in mitochondrial ATP metabolism (Figure 
1). Hence, this toxic insult impaired a fundamental 
feature of the mitochondrion. Like other measure-
ments carried out in the current study, no signifi-
cant difference in Ca2+-induced ATP depletion was 
detected when various mitochondrial preparations 
were compared (Figure 1).
 Evaluating the effects of novel pharma-
ceuticals on the function of cellular powerplants 
is a critical process in drug development (92-94). 
Hence, it is crucial to evaluate these candidates' ef-
fects or assess toxins to find therapeutic/preventive 
options in this field. But we, as members of the 
scientific community involved in the development 
of new drugs or the study of the mechanism of 
damage of these substances in biological environ-
ments, must know that different models essentially 
could give a completely different result. Therefore, 
finding an answer in a model doesn't simply mean 
that it could be extrapolated to other models.
 To introduce a new drug and ultimately 
use it in humans, very complex steps must be 

taken (95, 96). In this order, several factors, in-
cluding the biocompatibility and safety of these 
candidates, should be tested. Obviously, isolated 
mitochondria preparations used in this model have 
extreme differences in their size, structure, en-
zymes, and genetic content. However, hopefully, 
they almost revealed a similar response to a com-
mon toxic insult. But, it should be mentioned that 
molecules such as drugs may not have the same 
results in such systems. Hence, using other toxic-
ity testing systems is a crucial and inevitable com-
ponent of the drug development process. Finally, 
it should be mentioned that all models, despite 
their differences, could together give reasonable 
estimates of the effects of a drug on a biological 
system. To date, these are all available tools we 
have as scientific methods. In the future, the con-
vergence of these models and other technologies 
such as artificial intelligence could probably make 
developing secure pharmaceuticals and therapeu-
tic interventions much more accessible and surely 
with lower ethical issues (e.g., using experimental 
animals).
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