Zoledronic Acid-Induced Insulitis in Rats

Document Type : Original Article

Authors

1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Department of Toxicology and Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

4 Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran.

5 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

6 Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan, China.

7 College of Life Sciences, Shanxi Agricultural Sciences, Taigu, Shanxi, China.

10.30476/tips.2023.97995.1181

Abstract

Insulitis is the inflammation of beta cells of the Langerhans islets. It is well-known that insulitis is a prevalent complication of diabetes. A series of xenobiotics, including drugs, could also induce insulitis. The current study evaluated the effect of zoledronic acid (ZLD) on the pancreas in an animal model. Actually, in an attempt to evaluate the adverse effects of ZLD on the kidney, we noticed severe morphological alterations in the pancreas. Therefore, the effects of ZLD on the pancreas tissue were further investigated. Rats received ZLD (10 and 15 mg/kg, single dose, i.p) and pancreas weight index, serum biomarkers of pancreas injury, the level of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), oxidative stress biomarkers in this organ, and pancreas histopathological alterations were assessed. A significant increase in pancreas weight index was detected in ZLD-treated animals. ZLD also significantly increased serum amylase and lipase levels. No significant changes in serum glucose were detected in this study. A significant increase in reactive oxygen species, lipid peroxidation, decreased glutathione levels, and antioxidant capacity was also evident in the pancreas of ZLD-treated rats. Histopathological findings indicate the insulitis lesions of the islets of Langerhans at both doses of 10 and 15 mg/kg of ZLD. The data obtained from this study revealed insulitis as a serious adverse effect associated with high doses of ZLD. Clearly, further studies are warranted to evaluate the effects of other doses and/or patterns of administration of ZLD on pancreas tissue and, finally, the clinical significance of these data.

Highlights

Heresh Rezaei (Google Scholar)

Reza Heidari (Google Scholar)

 

Keywords


1.    In't Veld P. Insulitis in human type 1 diabetes: a comparison between patients and animal models. Semin Immunopathol. 2014 Sep;36(5):569-79. doi: 10.1007/s00281-014-0438-4. Epub 2014 Jul 9. PMID: 25005747; PMCID: PMC4186970.
2.    Lundberg M, Seiron P, Ingvast S, Korsgren O, Skog O. Insulitis in human diabetes: a histological evaluation of donor pancreases. Diabetologia. 2017 Feb;60(2):346-353. doi: 10.1007/s00125-016-4140-z. Epub 2016 Oct 28. PMID: 27796420; PMCID: PMC6518093.
3.    Pugliese A. Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes. 2016 Jul;17 Suppl 22(Suppl Suppl 22):31-6. doi: 10.1111/pedi.12388. PMID: 27411434; PMCID: PMC4948864.
4.    Campbell-Thompson ML, Atkinson MA, Butler AE, Chapman NM, Frisk G, Gianani R, et al. The diagnosis of insulitis in human type 1 diabetes. Diabetologia. 2013 Nov;56(11):2541-3. doi: 10.1007/s00125-013-3043-5. Epub 2013 Sep 5. PMID: 24006089.
5.    Donath MY, Böni-Schnetzler M, Ellingsgaard H, Ehses JA. Islet inflammation impairs the pancreatic beta-cell in type 2 diabetes. Physiology (Bethesda). 2009 Dec;24:325-31. doi: 10.1152/physiol.00032.2009. PMID: 19996363.
6.    Ehses JA, Böni-Schnetzler M, Faulenbach M, Donath MY. Macrophages, cytokines and beta-cell death in Type 2 diabetes. Biochem Soc Trans. 2008 Jun;36(Pt 3):340-2. doi: 10.1042/BST0360340. PMID: 18481953.
7.    Eguchi K, Nagai R. Islet inflammation in type 2 diabetes and physiology. J Clin Invest. 2017 Jan 3;127(1):14-23. doi: 10.1172/JCI88877. Epub 2017 Jan 3. PMID: 28045399; PMCID: PMC5199688.
8.    Marchetti P. Islet inflammation in type 2 diabetes. Diabetologia. 2016;59;668-72. doi: 10.1007/s00125-016-3875-x.
9.    Stosic-Grujicic S, Dimitrijevic M, Bartlett R. Leflunomide protects mice from multiple low dose streptozotocin (MLD-SZ)-induced insulitis and diabetes. Clin Exp Immunol. 1999 Jul;117(1):44-50. doi: 10.1046/j.1365-2249.1999.00900.x. PMID: 10403914; PMCID: PMC1905462.
10.    Anzai K, Nakamura M, Nagafuchi S, Iwakiri R, Ichinose I, Mitsugi K, et al. Production of anti-cardiolipin antibody in AKR/J mice with streptozocin-induced insulitis and diabetes. Diabetes Res Clin Pract. 1993 Apr;20(1):29-37. doi: 10.1016/0168-8227(93)90019-2. PMID: 8344126.
11.    LeCompte PM, Legg MA. Insulitis (lymphocytic infiltration of pancreatic islets) in late-onset diabetes. Diabetes. 1972 Jun;21(6):762-9. doi: 10.2337/diab.21.6.762. PMID: 4555102.
12.    La Noce M, Nicoletti GF, Papaccio G, Del Vecchio V, Papaccio F. Insulitis in Human Type 1 Diabetic Pancreas: From Stem Cell Grafting to Islet Organoids for a Successful Cell-Based Therapy. Cells. 2022 Dec 6;11(23):3941. doi: 10.3390/cells11233941. PMID: 36497199; PMCID: PMC9740394.
13.    Denis MC, Mahmood U, Benoist C, Mathis D, Weissleder R. Imaging inflammation of the pancreatic islets in type 1 diabetes. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12634-9. doi: 10.1073/pnas.0404307101. Epub 2004 Aug 10. PMID: 15304647; PMCID: PMC515109.
14.    Viehmann Milam AA, Maher SE, Gibson JA, Lebastchi J, Wen L, Ruddle NH, et al. A humanized mouse model of autoimmune insulitis. Diabetes. 2014 May;63(5):1712-24. doi: 10.2337/db13-1141. Epub 2014 Jan 29. PMID: 24478396; PMCID: PMC3994947.
15.    Rossini AA, Like AA, Chick WL, Appel MC, Cahill GF Jr. Studies of streptozotocin-induced insulitis and diabetes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2485-9. doi: 10.1073/pnas.74.6.2485. PMID: 142253; PMCID: PMC432197.
16.    Han X, Tao YL, Deng YP, Yu JW, Cai J, Ren GF, et al. Metformin ameliorates insulitis in STZ-induced diabetic mice. PeerJ. 2017 Apr 13;5:e3155. doi: 10.7717/peerj.3155. PMID: 28439456; PMCID: PMC5399881.
17.    Cheer SM, Noble S. Zoledronic acid. Drugs. 2001;61(6):799-805; discussion 806. doi: 10.2165/00003495-200161060-00010. PMID: 11398911.
18.    Coleman R, Woodward E, Brown J, Cameron D, Bell R, Dodwell D, et al. Safety of zoledronic acid and incidence of osteonecrosis of the jaw (ONJ) during adjuvant therapy in a randomised phase III trial (AZURE: BIG 01-04) for women with stage II/III breast cancer. Breast Cancer Res Treat. 2011 Jun;127(2):429-38. doi: 10.1007/s10549-011-1429-y. Epub 2011 Mar 11. PMID: 21394500.
19.    Diel IJ, Bergner R, Grötz KA. Adverse effects of bisphosphonates: current issues. J Support Oncol. 2007 Nov-Dec;5(10):475-82. PMID: 18240669.
20.    Kotian P, Boloor A, Sreenivasan S. Study of Adverse Effect Profile of Parenteral Zoledronic Acid in Female Patients with Osteoporosis. J Clin Diagn Res. 2016 Jan;10(1):OC04-6. doi: 10.7860/JCDR/2016/17061.7021. Epub 2016 Jan 1. PMID: 26894105; PMCID: PMC4740633.
21.    Munier A, Gras V, Andrejak M, Bernard N, Jean-Pastor MJ, Gautier S, et al. Zoledronic Acid and renal toxicity: data from French adverse effect reporting database. Ann Pharmacother. 2005 Jul-Aug;39(7-8):1194-7. doi: 10.1345/aph.1E589. Epub 2005 Jun 14. PMID: 15956222.
22.    Reid IR, Gamble GD, Mesenbrink P, Lakatos P, Black DM. Characterization of and risk factors for the acute-phase response after zoledronic acid. J Clin Endocrinol Metab. 2010 Sep;95(9):4380-7. doi: 10.1210/jc.2010-0597. Epub 2010 Jun 16. PMID: 20554708.
23.    Dhillon S, Lyseng-Williamson KA. Zoledronic acid : a review of its use in the management of bone metastases of malignancy. Drugs. 2008;68(4):507-34. doi: 10.2165/00003495-200868040-00010. PMID: 18318568.
24.    Heidari R, Niknahad H. The Role and Study of Mitochondrial Impairment and Oxidative Stress in Cholestasis. Methods Mol Biol. 2019;1981:117-132. doi: 10.1007/978-1-4939-9420-5_8. PMID: 31016651.
25.    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248-54. doi: 10.1006/abio.1976.9999. PMID: 942051.
26.    Kanatsuna N, Taneera J, Vaziri-Sani F, Wierup N, Larsson HE, Delli A, et al. Autoimmunity against INS-IGF2 protein expressed in human pancreatic islets. J Biol Chem. 2013 Oct 4;288(40):29013-23. doi: 10.1074/jbc.M113.478222. Epub 2013 Aug 9. PMID: 23935095; PMCID: PMC3789998.
27.    Polascik TJ, Mouraviev V. Zoledronic acid in the management of metastatic bone disease. Ther Clin Risk Manag. 2008 Feb;4(1):261-8. doi: 10.2147/tcrm.s2707. PMID: 18728715; PMCID: PMC2503661.
28.    Maricic M. Intravenous zoledronic acid: what are the indications for male osteoporosis? Curr Osteoporos Rep. 2010 Mar;8(1):4-9. doi: 10.1007/s11914-010-0002-7. PMID: 20425084.
29.    Cheung AS, Hoermann R, Zhu J, Lim Joon D, Zajac JD, Grossmann M. Zoledronic acid does not affect insulin resistance in men receiving androgen deprivation therapy: a prespecified secondary analysis of a randomised controlled trial. Ther Adv Endocrinol Metab. 2021 May 5;12:20420188211012118. doi: 10.1177/20420188211012118. PMID: 34104395; PMCID: PMC8111529.
30.    Lei XG, Vatamaniuk MZ. Two tales of antioxidant enzymes on β cells and diabetes. Antioxid Redox Signal. 2011 Feb 1;14(3):489-503. doi: 10.1089/ars.2010.3416. Epub 2010 Oct 19. PMID: 20618069; PMCID: PMC3026656.
31.    Miki A, Ricordi C, Sakuma Y, Yamamoto T, Misawa R, Mita A, et al. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One. 2018 May 3;13(5):e0196570. doi: 10.1371/journal.pone.0196570. PMID: 29723228; PMCID: PMC5933778.
32.    Leenders F, Groen N, de Graaf N, Engelse MA, Rabelink TJ, de Koning EJP, et al. Oxidative Stress Leads to β-Cell Dysfunction Through Loss of β-Cell Identity. Front Immunol. 2021 Nov 4;12:690379. doi: 10.3389/fimmu.2021.690379. PMID: 34804002; PMCID: PMC8601632.
33.    Jamshidzadeh A, Abdoli N, Niknahad H, Azarpira N, Mardani E, Mousavi S, et al. Taurine alleviates brain tissue markers of oxidative stress in a rat model of hepatic encephalopathy. Trend Pharm Sci. 2017;3;181-92. doi.
34.    Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, et al. N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PharmaNutrition. 2017;5;141-7. doi: 10.1016/j.phanu.2017.10.003.
35.    Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science. 1976 Jul 30;193(4251):415-7. doi: 10.1126/science.180605. PMID: 180605.
36.    Anastasilakis AD, Tsourdi E, Tabacco G, Naciu AM, Napoli N, Vescini F, et al. The Impact of Antiosteoporotic Drugs on Glucose Metabolism and Fracture Risk in Diabetes: Good or Bad News? J Clin Med. 2021 Mar 2;10(5):996. doi: 10.3390/jcm10050996. PMID: 33801212; PMCID: PMC7957889.
37.    Iannuzzo G, De Filippo G, Merlotti D, Abate V, Buonaiuto A, Evangelista M, et al. Effects of Bisphosphonate Treatment on Circulating Lipid and Glucose Levels in Patients with Metabolic Bone Disorders. Calcif Tissue Int. 2021 Jun;108(6):757-763. doi: 10.1007/s00223-021-00811-w. Epub 2021 Feb 9. PMID: 33559705; PMCID: PMC8166716.
38.    Leto G, Badalamenti G, Arcara C, Crescimanno M, Flandina C, Tumminello FM, et al. Effects of zoledronic acid on proteinase plasma levels in patients with bone metastases. Anticancer Res. 2006 Jan-Feb;26(1A):23-6. PMID: 16475674.
39.    Ory B, Blanchard F, Battaglia S, Gouin F, Rédini F, Heymann D. Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status. Mol Pharmacol. 2007 Jan;71(1):333-43. doi: 10.1124/mol.106.028837. Epub 2006 Oct 18. PMID: 17050806.
40.    Mitrofan LM, Castells FB, Pelkonen J, Mönkkönen J. Lysosomal-mitochondrial axis in zoledronic acid-induced apoptosis in human follicular lymphoma cells. J Biol Chem. 2010 Jan 15;285(3):1967-79. doi: 10.1074/jbc.M109.038935. Epub 2009 Oct 29. PMID: 19875454; PMCID: PMC2804355.
41.    Yazıcı T, Koçer G, Nazıroğlu M, Övey İS, Öz A. Zoledronic Acid, Bevacizumab and Dexamethasone-Induced Apoptosis, Mitochondrial Oxidative Stress, and Calcium Signaling Are Decreased in Human Osteoblast-Like Cell Line by Selenium Treatment. Biol Trace Elem Res. 2018 Aug;184(2):358-368. doi: 10.1007/s12011-017-1187-8. Epub 2017 Oct 28. PMID: 29081061.
42.    Singireesu SSNR, Mondal SK, Yerramsetty S, Misra S. Zoledronic acid induces micronuclei formation, mitochondrial-mediated apoptosis and cytostasis in kidney cells. Life Sci. 2018 Jun 15;203:305-314. doi: 10.1016/j.lfs.2018.04.059. Epub 2018 May 2. PMID: 29729261.
43.    Lightfoot YL, Chen J, Mathews CE. Role of the mitochondria in immune-mediated apoptotic death of the human pancreatic β cell line βLox5. PLoS One. 2011;6(6):e20617. doi: 10.1371/journal.pone.0020617. Epub 2011 Jun 27. PMID: 21738580; PMCID: PMC3124469.
44.    Dabravolski SA, Orekhova VA, Baig MS, Bezsonov EE, Starodubova AV, Popkova TV, et al. The Role of Mitochondrial Mutations and Chronic Inflammation in Diabetes. Int J Mol Sci. 2021 Jun 23;22(13):6733. doi: 10.3390/ijms22136733. PMID: 34201756; PMCID: PMC8268113.
45.    Ahmadi N, Ghanbarinejad V, Ommati MM, Jamshidzadeh A, Heidari R. Taurine prevents mitochondrial membrane permeabilization and swelling upon interaction with manganese: Implication in the treatment of cirrhosis-associated central nervous system complications. J Biochem Mol  Toxicol. 2018;32;e22216. doi: 10.1002/jbt.22216.
46.    Shafiekhani M, Ommati MM, Azarpira N, Heidari R, Salarian AA. Glycine supplementation mitigates lead-induced renal injury in mice. J Exp Pharmacol. 2019 Feb 18;11:15-22. doi: 10.2147/JEP.S190846. PMID: 30858736; PMCID: PMC6385776.
47.    Jamshidzadeh A, Heidari R, Abasvali M, Zarei M, Ommati MM, Abdoli N, et al. Taurine treatment preserves brain and liver mitochondrial function in a rat model of fulminant hepatic failure and hyperammonemia. Biomed Pharmacother. 2017 Feb;86:514-520. doi: 10.1016/j.biopha.2016.11.095. Epub 2016 Dec 23. PMID: 28024286.
48.    Niknahad H, Jamshidzadeh A, Heidari R, Zarei M, Ommati MM. Ammonia-induced mitochondrial dysfunction and energy metabolism disturbances in isolated brain and liver mitochondria, and the effect of taurine administration: relevance to hepatic encephalopathy treatment. Clin Exp Hepatol. 2017 Sep;3(3):141-151. doi: 10.5114/ceh.2017.68833. Epub 2017 Jul 5. PMID: 29062904; PMCID: PMC5649485.