Evaluating the effects of different fractions obtained from Gundelia tournefortii extract against carbon tetrachloride-induced liver injury in rats

Hossein Niknahad¹,², Reza Heidari¹,*, Tannaz Mokhtebaz³, Sasan Mansouri³, Shadab Dehshahri⁴, Narges Abdoli⁵, Negar Azarpira⁶, Asma Najibi²

¹Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
²Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
³Student Research Committee, International branch, Shiraz University of Medical Sciences, Shiraz, Iran.
⁴Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, International Branch, Shiraz, Iran.
⁵Food and Drug Organization, Ministry of Health, Tehran, Iran.
⁶Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

Xenobiotics-induced liver injury is a major challenge for clinicians and pharmaceutical industry. Hence, finding new therapeutic molecules against this complication has clinical value. The current investigation aimed to evaluate the potential protective effects of different fractions obtained from Gundelia tournefortii (GT) hydroalcoholic extract in a rat model of acute hepatic injury. Male Sprague-Dawley rats (200-250 g) were treated with carbon tetrachloride (CCl₄) (1.5 ml/kg, i.p). Then ethanol, water, chloroform, ethyl acetate, and n-Butanol fractions of GT extract were administered. Biochemical and histopathological markers of hepatic injury were assessed, and glutathione (GSH) and lipid peroxidation were monitored in liver samples. CCl₄ administration caused hepatotoxicity as revealed by an increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) activity, as well as pathological changes of the liver. Furthermore, a significant reduction in hepatic glutathione content and an elevation in lipid peroxidation were observed in CCl₄ treated rats. It was found that the n butanol (200 mg/kg) and the ethyl acetate (300 mg/kg) fractions of GT extract protected liver against CCl₄ induced damage as judged by lower AST, ALT, LDH and lipid peroxidation, prevention of tissue glutathione depletion, and alleviation of histopathological damages of liver in the extract treated animals. As n butanol and the ethyl acetate fractions of GT effectively alleviated the liver injury induced by CCl₄ and provided antioxidant properties, we might be able to propose that the hepatoprotective chemicals of GT extract are present in these fractions.

Keywords: Gundelia tournefortii, Hepatoprotective, Hepatotoxicity, Liver injury, Medicinal plants.

1. Introduction

Many chemicals are able to affect liver function. Indeed, the hepatic injury is a major clinical problem induced by different xenobiotics including drugs and other chemicals (1-4). Hence, finding new protective agents against chemicals-induced hepatic injury has clinical value. Several hepatoprotective agents are studied to find a way to protect the liver from toxic insults (5-7). Recently, interest in the discovery of natural hepatoprotective agents has risen greatly. Principal candidates in this discovery process are medicinal plants (8).

Carbon tetrachloride (CCl₄)-induced liver injury is extensively applied as an animal model of liver fibrosis and hepatic failure (9). Extensive reactive oxygen species (ROS) formation and its deleterious adverse events that finally lead to he-
patic failure, are common futures ensued CCl₄ administration to animals (9). The hepatoprotec-
tive properties of many herbal remedies have been evaluated in this model to find hepatoprotective
molecules with potential therapeutic capabilities (10-13).

Gundelia tournefortii (L.) (GT), which
is known as “Kangar” in Iran, is used as food in
different forms. Furthermore, this plant is used
against gastrointestinal disease in Iranian folk
medicine (14-16). Previously, we have shown that
the hydroalcoholic extract of GT effectively allevi-
ated carbon tetrachloride-induced toxicity in both
isolated hepatocytes and animals (17). However,
it was found that the concentrations greater than 1
mg/ml of GT extract were cytotoxic in isolated rat
hepatocytes (17). The exact chemical(s) respon-
sible for the hepatoprotective effects of GT extract
is not fully understood so far. The current investi-
gation attempted to evaluate the hepatoprotective
effects of different fractions obtained from the
hydroalcoholic extract of G. tournefortii, which
will enhance our understanding about the types
of chemicals responsible for the hepatoprotective
properties of this plant.

2. Materials and methods

2.1. Chemicals

Trichloroacetic acid (TCA), Dithio-bis-
nitro benzoic acid (DTNB), Phosphoric acid, n-
Butanol, and Carbon tetrachloride (CCl₄), were
purchased from Merck (Darmstadt, Germany).
Thiobarbituric acid (TBA), and Tris (hydroxy-
methyl) aminomethane), were from Sigma Chemi-
cal Company Sigma-Aldrich (St. Louis, USA).
Kits for evaluation of serum markers of liver in-
jury were obtained from Pars Azmun® (Tehran,
Iran). All other chemicals used for buffer solutions
were of the highest grade commercially available.

2.2. Plant material and extracts preparation

Fresh footstalk of GT was collected dur-
ing April 2013 from rural areas around Shiraz,
Fars, Iran. The plant was authenticated by a botan-
ist and the voucher specimen with code “34500”
has been deposited. Six hundred and forty grams
of dried powdered plant were macerated in 70%
aqueous ethanol at room temperature for 48 h. The
extract was filtered and concentrated under re-
duced pressure and low temperature (40 °C) on a
rotary evaporator until no ethanol remained in the
extract. The prepared extract was dispersed in 200
ml water and placed in a decanter. Several solvents
with different polarities, including ethanol, water,
chloroform, ethyl acetate, and n-Butanol (600 mL
each), were used to prepare different fractions of
GT extract. The obtained fractions were concen-
trated on a rotary evaporator and then stored in 4°C
until administration.

2.3. Animals and Study Procedure

Male Sprague-Dawley rats (200-250 g)
were obtained from the animal laboratories of
Shiraz University of Medical Sciences, Shiraz,
Iran. Animals had free access to standard labora-
tory chow and tap water. Rats were handled and
used, according to the ethical guidelines of Shiraz
University of Medical Sciences, Shiraz, Iran. Rats
were randomly divided into thirteen groups of six
animals. The treatments were as follows:

1) Control (vehicle-treated, received olive oil, 1.5 ml/
kg, i.p)
2) CCl₄ (1.5 ml/kg in olive oil, i.p)
3) CCl₄+n-Hexane fraction (200 mg/kg, gavage)
4) CCl₄+n-Hexane fraction (300 mg/kg, gavage)
5) CCl₄+Ethanolic fraction (200 mg/kg, gavage)
6) CCl₄+Ethanolic fraction (300 mg/kg, gavage)
7) CCl₄+Ethylacetate fraction (200 mg/kg, gavage)
8) CCl₄+Ethylacetate fraction (300 mg/kg, gavage)
9) CCl₄+Chloroform fraction (200 mg/kg, gavage)
10) CCl₄+Chloroform fraction (300 mg/kg, gavage)
11) CCl₄+Water fraction (200 mg/kg, gavage)
12) CCl₄+Water fraction (300 mg/kg, gavage)
13) CCl₄+Silymarin (25 mg/kg, gavage)

The hepatotoxic dose of CCl₄ in rats
was selected from previous investigations (18).
Different fractions of GT extract were com-
pared with silymarin as a proved hepatoprotec-
tive agent against CCL₄-induced liver injury
(19, 20). The extracts were administered orally
to rats for three consecutive days before admin-
istration of CCl₄. Twenty-four hours after CCl₄
administration, animals were anesthetized by
pentobarbital (50 mg/kg, i.p), and blood was col-
Hepatoprotective effects of *Gundelia* *tournefortii*

Liver glutathione contents were assessed by determining non-protein sulphydryls with the Ellman reagent (25). Samples of the liver (200 mg) were homogenized in 8 ml of 20 mM EDTA. Then, 5 mL of tissue homogenate was mixed with 4 mL of distilled water and 1 mL of trichloroacetic acid (TCA) (50% w/v) (26). The mixture was vigorously shaken and centrifuged (15 min, 700 g, 4 °C). Then, 2 mL of the supernatant was treated with 100 µl of Ellman reagent (DTNB, 0.01M in methanol), and the absorbance of developed color was measured at 412 nm with an Ultrospec 2000® UV spectrophotometer (23, 27-28).

2.6. Lipid peroxidation assay

Thiobarbituric acid reactive substances (TBARS) test was employed to assess the amount of lipid peroxidation in liver tissue. Briefly, the reaction mixture consists of 0.5 mL of 10% liver homogenate, 3 mL of 1% phosphoric acid, and 1 mL of 1% thiobarbituric acid. The mixture was shaken and then heated in boiling water (100 °C) for 45 min (21, 23, 29). Samples were centrifuged

2.5. Liver glutathione content measurement

Table 1. The effect of different fractions of *Gundelia tournefortii* extracts on serum biochemical parameters after CCl₄ administration to rats.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Parameters assessed</th>
<th>Serum ALT (U/l)</th>
<th>Serum AST (U/l)</th>
<th>Serum LDH (U/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Vehicle-treated)</td>
<td></td>
<td>50.25±4</td>
<td>123±2.35</td>
<td>993±3</td>
</tr>
<tr>
<td>+Carbon tetrachloride (CCl₄)</td>
<td></td>
<td>4499±1314*</td>
<td>4984±723*</td>
<td>10464±2269*</td>
</tr>
<tr>
<td>+SLM 25 mg/kg</td>
<td></td>
<td>135.2±15</td>
<td>451±53</td>
<td>2250±226</td>
</tr>
<tr>
<td>+EF. 200 mg/kg</td>
<td></td>
<td>1548±680</td>
<td>2082±475</td>
<td>2328±414</td>
</tr>
<tr>
<td>+EF. 300 mg/kg</td>
<td></td>
<td>195±48</td>
<td>342±66</td>
<td>1388±116</td>
</tr>
<tr>
<td>+CF. 200 mg/kg</td>
<td></td>
<td>1906±440</td>
<td>3805±817</td>
<td>6056±2770</td>
</tr>
<tr>
<td>+CF. 300 mg/kg</td>
<td></td>
<td>3214±794</td>
<td>3499±906</td>
<td>2633±1217</td>
</tr>
<tr>
<td>+EAF. 200 mg/kg</td>
<td></td>
<td>2828±760</td>
<td>2612±683</td>
<td>4168±1165</td>
</tr>
<tr>
<td>+EAF. 300 mg/kg</td>
<td></td>
<td>793±410</td>
<td>1097±709</td>
<td>2601±478</td>
</tr>
<tr>
<td>+BF. 200 mg/kg</td>
<td></td>
<td>1131±68</td>
<td>1401±363</td>
<td>2011±189</td>
</tr>
<tr>
<td>+BF. 300 mg/kg</td>
<td></td>
<td>663±182</td>
<td>836±213</td>
<td>1492±52</td>
</tr>
<tr>
<td>+WF. 200 mg/kg</td>
<td></td>
<td>3899±1190</td>
<td>5732±1262</td>
<td>11608±3486</td>
</tr>
<tr>
<td>+WF. 300 mg/kg</td>
<td></td>
<td>2598±907</td>
<td>3816±908</td>
<td>8364±4459</td>
</tr>
</tbody>
</table>

Data are presented as Mean±SD for 6 animals in each group.

* Indicates significantly higher than control (Vehicle-treated) group (P<0.001).

a Indicates significantly lower as compared with carbon tetrachloride-treated rats (P<0.001).

(3000 g for 5 minutes) and the absorbance of developed color was read at 532 nm using an Ultrospec 2000® UV spectrophotometer (29).

2.7. Statistical analysis

Results are shown as Mean±SEM for at least six animals in each group. Comparisons between multiple groups were made by a one-way ANOVA followed by Dunnett’s multiple comparisons test. Data are presented as Mean±SEM (n=6).

Table 2. Liver glutathione (GSH) content and tissue lipid peroxidation after administration of carbon tetrachloride and different fractions obtained from GT extract.

<table>
<thead>
<tr>
<th>Parameters assessed</th>
<th>Hepatic Glutathione (µmol/mg tissue)</th>
<th>Lipid Peroxidation (nmol/mg tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (Vehicle-treated)</td>
<td>56.3±2.24</td>
<td>1.92±0.22</td>
</tr>
<tr>
<td>+Carbon tetrachloride (CCl₄)</td>
<td>21±1.2c</td>
<td>7.95±1a</td>
</tr>
<tr>
<td>+SLM 25 mg/kg</td>
<td>32±0.6d</td>
<td>5.48±0.4b</td>
</tr>
<tr>
<td>+EF. 200 mg/kg</td>
<td>32±2.5d</td>
<td>3.79±0.22b</td>
</tr>
<tr>
<td>+EF. 300 mg/kg</td>
<td>33±1.16d</td>
<td>4.05±0.14b</td>
</tr>
<tr>
<td>+CF. 200 mg/kg</td>
<td>23.2±2.73</td>
<td>8.03±0.26</td>
</tr>
<tr>
<td>+CF. 300 mg/kg</td>
<td>28.6±1.3</td>
<td>7.2±0.83</td>
</tr>
<tr>
<td>+EAF. 200 mg/kg</td>
<td>39.88±2d</td>
<td>6.4±0.3b</td>
</tr>
<tr>
<td>+EAF. 300 mg/kg</td>
<td>40.87±1d</td>
<td>6±0.62b</td>
</tr>
<tr>
<td>+BF. 200 mg/kg</td>
<td>43.7±1.97d</td>
<td>6.98±1.1b</td>
</tr>
<tr>
<td>+BF. 300 mg/kg</td>
<td>49.3±4.72d</td>
<td>5.21±0.8b</td>
</tr>
<tr>
<td>+WF. 200 mg/kg</td>
<td>20.8±1.25</td>
<td>8±0.42</td>
</tr>
<tr>
<td>+WF. 300 mg/kg</td>
<td>21.72±1.7</td>
<td>7.52±0.67</td>
</tr>
</tbody>
</table>

Data are presented as Mean±SEM (n=6).

a Indicates significantly higher than control (Vehicle-treated) group (P<0.05).
b Indicates significantly lower as compared carbon tetrachloride-treated rats (P<0.05).
c Indicates significantly lower as compared with control animals (P<0.05).
d Indicates significantly higher as compared carbon tetrachloride-treated rats (P<0.05).

Analysis of variance (ANOVA) followed by Turkey’s post hoc test. Differences were considered significant when $P<0.05$.

3. Results

CCl_4 (1.5 ml/kg, i.p) caused severe hepatic injury in rats as revealed by a dramatic increase in serum biomarkers of liver injury. It was found that serum ALT, AST, and LDH were significantly higher in CCl_4-treated rats than in the control group (Table 1). Moreover, hepatic glutathione (GSH) contents were decreased and significant lipid peroxidation was detected in the liver of CCl_4-treated animals (Table 2). Liver histopathological evaluation of CCl_4 treated rats showed centrilobular necrosis, fatty changes, and inflammatory cells infiltration (Figure 1, parts B&C).

Different fractions obtained from the hydroalcoholic extract of GT were screened for their possible hepatoprotective activity against CCl_4 in rats. It was found that ethyl acetate and n-butanol fractions of GT hydroalcoholic extract, effectively reduced serum biochemical markers of liver injury (Table 1). The water and chloroform fractions

Figure 2. Effects of ethyl acetate and n-butanol fractions of GT extract on carbon tetrachloride-induced liver injury in rats. For histopathologic changes grades refer to table 3. A: Control (vehicle-treated) group, showed normal liver histopathology. B: Centrilobular necrosis, fatty changes, and inflammatory cells infiltration were observed in the liver of CCl_4-treated animals. C&D: Administration of the ethyl acetate fraction of GT extract (200 and 300 mg/kg respectively) alleviated histopathological changes of liver induced by CCl_4. E&F: n-butanol fraction of GT extract (200 and 300 mg/kg respectively) reduced histopathological lesions induced by CCl_4. The n-butanol fraction was most effective at a lower dose (200 mg/kg, E) (Table 3).

Figure 3. Effects of chloroform and water fractions of GT extract on carbon tetrachloride-induced liver injury in the rat. For histopathologic changes grades refer to table 3. Centrilobular necrosis, fatty changes, and inflammatory cells infiltration were observed in the liver of CCl_4-treated animals (A). Administration of the chloroform fraction (B&C: 200 mg/kg and 300 mg/kg respectively) and/or water fraction (D&E: 200 mg/kg and 300 mg/kg respectively) of GT extract didn’t alleviate pathological lesions induced by CCl_4 (Table 3).
Hossein Niknahad et al.

couldn’t reduce ALT, AST, and LDH in the serum of CCl₄-treated rats (Table 1).

A lower amount of lipid peroxidation was detected in the liver of animals that were co-treated with n-butanol and/or ethyl acetate fractions of GT extract (Table 2). Moreover, these fractions prevented the decrease in liver GSH induced by CCl₄ (Table 2). Water and chloroform fractions of GT extract didn’t have any significant effect on the level of liver glutathione and/or lipid peroxidation in CCl₄-treated animals (Table 2).

It was found that ethyl acetate (Figure 2) and n-butanol (Figure 3) fractions of GT extract effectively ameliorated CCl₄-induced histopathological changes of the liver. Water and chloroform fractions of GT extract were unable to prevent CCl₄ induced histopathological lesions (Figure 4).

4. Discussion

Carbon tetrachloride-induced hepatic injury is a widely employed experimental model to study the effects of hepatoprotective agents (30-32). CCl₄ is metabolized by liver cytochrome P450 (CYP450) system to produce a highly reactive intermediate, which can start a chain of free radical formation resulting in peroxidation of biomembrane lipids and damage to proteins and other cell components, which may eventually lead to hepatic injury (33). Hence, the major mechanism involved in the liver injury induced by CCl₄ is believed to be oxidative stress induction and its subsequent events including GSH depletion and lipid peroxidation (34) (Figure 4).

In this study, CCl₄ caused an elevation in serum biomarkers of liver injury and histopathological changes in rat liver. Moreover, CCl₄ also decreased the hepatic glutathione reservoirs and increased lipid peroxidation in the liver. These changes indicate the occurrence of oxidative stress following CCl₄ administration to rats. The n-butanol fraction with doses of 200, and 300 mg/kg and the ethyl acetate fraction with the dose of 300 mg/kg, protected the rat liver against CCl₄ induced injury. As the oxidative stress plays an important role in CCl₄-induced liver injury (20), a part of the hepatoprotective mechanism of GT might be related to its antioxidant properties. Different chemicals are characterized in GT. Compounds such as phenolic acids and flavonoids (35, 36), caffeic acid and its derivatives (37), chlorogenic acid (38), safrole, and curcumin (36) are identified in GT (Figure 4). Different previous investigations on the same species such as Cynara scolymus L. and Silybum marianum L., revealed that their hepatoprotective effects were mainly due to their antioxidant content (39, 40) and silymarin, as a widely investigated hepatoprotective agent (32).

There is a large circumstantial evidence implicating the hepatoprotective properties of flavonoids (41, 42), chlorogenic acid (43), and...
Hepatoprotective effects of *Gundelia tournefortii*

Collectively, it is proposed that the hepatoprotective effects of GT extract might be attributed to the presence of protective compounds, such as caffeic acid, chlorogenic acid, and different flavonoids (Figure 4) (39, 40). These compounds have different physicochemical properties and might distribute in different extract fractions due to their polarity. As ethyl acetate and n-butanol fractions of GT extract alleviated CCl₄-induced liver injury, we might be able to propose that the hepatoprotective chemicals of GT extract are dissolved in these fractions. The exact chemical(s) responsible for the hepatoprotective properties of GT and the mechanism(s) of hepatoprotection deserves more investigations. The proposed mechanism and the known chemical composition of GT, which might be responsible for its hepatoprotective properties, are summarized in figure 4.

Acknowledgments

The authors thank Pharmaceutical Sciences Research Center of Shiraz University of Medical Sciences for providing instrumental facilities to carry out this investigation.

Conflict of Interest

None declared.

Hossein Niknahad et al.