Highly Efficient Synthesis of 1,4-Disubstituted 1,2,3-Triazole Derivatives under Ultrasonic Irradiation, Evaluation of Vasorelaxant Activities

Document Type : Original Article

Authors

1 Department of Chemistry, Shiraz University, Shiraz, Iran.

2 Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/tips.2024.101918.1228

Abstract

1,4-Disubstituted 1,2,3-Triazole derivatives are exciting pharmacophores with a wide range of biological activities, including anticancer, antituberculosis, antifungal, antibacterial, and anti-HIV. Due to their diverse uses, many efforts have been made to synthesize these valuable medicinal scaffolds. Unfortunately, most of them have difficult and time-consuming procedures, low yields of the products, or environmentally toxic residues, therefore, it is necessary to develop easy methods with high efficiency and without harmful by-products. In the first part of this study, differently decorated 1,4-disubstituted 1,2,3-triazole derivatives were synthesized through a one-pot, two-step procedure from epoxides, alkynes and sodium azide in the presence of Cu2O in water under ultrasonic irradiation with high efficiency and without any toxic residues. In the second part of this research, the vasorelaxant activity of these triazole derivatives was studied in isolated rat thoracic aorta. Based on the results, three compounds have potent vasorelaxant activity and can be considered in future evaluations for the development of new antihypertensive drugs.

Highlights

Elahe Sattarinezhad (Google Scholar)

Keywords


1.    Alraqa SY, Alharbi K, Aljuhani A, Rezki, Aouad NMR, Ali I. Design, click conventional and microwave syntheses, DNA binding, docking and anticancer studies of benzotriazole-1,2,3-triazole molecular hybrids with different pharmacophores. J Mol Struct. 2021. 1225: p. 129192.
2.    Alam MM. 1,2,3-Triazole hybrids as anticancer agents: A review. Arch Pharm (Weinheim). 2022 Jan;355(1):e2100158. doi: 10.1002/ardp.202100158. Epub 2021 Sep 24. PMID: 34559414.
3.    Sharma A, Agrahari AK, Rajkhowa S, Tiwari VK. Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem. 2022 Aug 5;238:114454. doi: 10.1016/j.ejmech.2022.114454. Epub 2022 May 13. PMID: 35597009.
4.    Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg Med Chem. 2019 Aug 15;27(16):3511-3531. doi: 10.1016/j.bmc.2019.07.005. Epub 2019 Jul 4. PMID: 31300317; PMCID: PMC7185471.
5.    Chauhan S, Verma V, Kumar D,  Kumar A. Synthesis, antimicrobial evaluation and docking study of triazole containing triaryl-1H-imidazole. Synth Commun. 2019. 49(11): p. 1427-1435.
6.    Phatak PS, Sathe BP, Dhumal ST, Rehman A, Dixit PP, Khedkar VM, Haval KP. Synthesis, Antimicrobial Evaluation, and Docking Studies of Substituted Acetylphenoxymethyl‐triazolyl‐N‐phenylacetamides. J Heterocyclic Chem. 2019. 56(7): p. 1928-1938.
7.    Viegas DJ, da Silva VD, Buarque CD, Bloom DC, Abreu PA. Antiviral activity of 1,4-disubstituted-1,2,3-triazoles against HSV-1 in vitro. Antivir Ther. 2020;25(8):399-410. doi: 10.3851/IMP3387. PMID: 33705354.
8.    Azim T, Wasim M, Akhtar MS, Akram I. An in vivo evaluation of anti-inflammatory, analgesic and anti-pyretic activities of newly synthesized 1, 2, 4 Triazole derivatives. BMC Complement Med Ther. 2021 Dec 31;21(1):304. doi: 10.1186/s12906-021-03485-x. PMID: 34972515; PMCID: PMC8720215.
9.    Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim). 2021 Jan;354(1):e2000163. doi: 10.1002/ardp.202000163. Epub 2020 Sep 22. PMID: 32960467.
10.    Sharghi H, Ebrahimpourmoghaddam S, Doroodmand MM. Purkhosrow A. Synthesis of Vasorelaxaing 1,4-Disubstituted 1,2,3-Triazoles Catalyzed by a 4′-Phenyl-2,2′:6′,2′′-Terpyridine Copper(II) Complex Immobilized on Activated Multiwalled Carbon Nanotubes. Asian J Org Chem. 2012. 1(4): p. 377-388.
11.    Salma U, Ahmad S, Alam MDZ,  Khan SA. A review: Synthetic approaches and biological applications of triazole derivatives. J Mol Struct. 2024. 1301: p. 137240.
12.    Aflak N, Ben El Ayouchia H, Bahsis L, Anane H, Julve M, Stiriba SE. Recent Advances in Copper-Based Solid Heterogeneous Catalysts for Azide-Alkyne Cycloaddition Reactions. Int J Mol Sci. 2022 Feb 21;23(4):2383. doi: 10.3390/ijms23042383. PMID: 35216495; PMCID: PMC8874673.
13.    Aflak N, Ben El Ayouchia H, Bahsis L, El Mouchtari EM, Julve M, Rafqah S, et al. Sustainable Construction of Heterocyclic 1,2,3-Triazoles by Strict Click [3+2] Cycloaddition Reactions Between Azides and Alkynes on Copper/Carbon in Water. Front Chem. 2019 Feb 19;7:81. doi: 10.3389/fchem.2019.00081. PMID: 30838201; PMCID: PMC6389623.
14.    Lamarque J-F, Lamarque C, Lassara S, Médebielle M, Molette J, David E. Copper catalyzed 1,3-dipolar cycloaddition reaction of azides with N-(2-trifluoroacetylaryl)propargylamines: A mild entry to novel 1,4-disubstituted-[1,2,3]-triazole derivatives. J Fluor Chem. 2008. 129(9): p. 788-798.
15.    Hein JE, Fokin VV. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem Soc Rev. 2010 Apr;39(4):1302-15. doi: 10.1039/b904091a. Epub 2010 Mar 4. PMID: 20309487; PMCID: PMC3073167.
16.    Jiang Y, Kong D, Zhao J, Zhang W, Xu W, Li W, Xu G. A simple, efficient thermally promoted protocol for Huisgen-click reaction catalyzed by CuSO4·5H2O in water. Tetrahedron Letters, 2014. 55(15): p. 2410-2414.
17.    Majhi S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason Sonochem. 2021 Sep;77:105665. doi: 10.1016/j.ultsonch.2021.105665. Epub 2021 Jul 18. PMID: 34298310; PMCID: PMC8322467.
18.    Machado IV, Dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. Ultrason Sonochem. 2021 Oct;78:105704. doi: 10.1016/j.ultsonch.2021.105704. Epub 2021 Aug 5. PMID: 34454180; PMCID: PMC8406036.
19.    Gibault F, Sturbaut M, Coevoet M, Pugnière M, Burtscher A, Allemand F, Melnyk P, Hong W, Rubin BP, Pobbati AV, Guichou JF, Cotelle P, Bailly F. Design, Synthesis and Evaluation of a Series of 1,5-Diaryl-1,2,3-triazole-4-carbohydrazones as Inhibitors of the YAP-TAZ/TEAD Complex. ChemMedChem. 2021 Sep 16;16(18):2823-2844. doi: 10.1002/cmdc.202100153. Epub 2021 Jul 1. PMID: 34032019.
20.    Babic-Samardzija K, Hackerman N. Triazole, benzotriazole and substituted benzotriazoles as corrosion inhibitors of iron in aerated acidic media. J Solid State Electrochem. 2005. 9: p. 483-497.
21.    Vala DP, Vala RM, Patel HM. Versatile Synthetic Platform for 1,2,3-Triazole Chemistry. ACS Omega. 2022 Oct 10;7(42):36945-36987. doi: 10.1021/acsomega.2c04883. PMID: 36312377; PMCID: PMC9608397.
22.    Kiranmye T, Vadivelu M, Sampath S, Muthu K, Karthikeyan K. Ultrasound-assisted catalyst free synthesis of 1,4-/1,5-disubstituted-1,2,3-triazoles in aqueous medium. Sustain Chem Pharm. 2021. 19: p. 100358.
23.    Rezki N, Aouad MR. Green ultrasound-assisted three-component click synthesis of novel 1H-1,2,3-triazole carrying benzothiazoles and fluorinated-1,2,4-triazole conjugates and their antimicrobial evaluation. Acta Pharm. 2017 Sep 1;67(3):309-324. doi: 10.1515/acph-2017-0024. PMID: 28858836.
24.    Sreedhar B,  Surendra ReddP, Sonochemical Synthesis of 1,4‐Disubstituted 1,2,3‐Triazoles in Aqueous Medium. Syn Communi. 2007. 37(5): p. 805-812.
25.    Jiang Y, Chen X, Qu L, Wang J, Yuan J, Chen S, Li X. An Efficient Ultrasound-assisted Method for the Synthesis of 1,4-Disubstituted Triazoles. Z Naturforsch B. 2011;66(1): 77-82.
26.    Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G. Alkyne-azide click reaction catalyzed by metallic copper under ultrasound. Nat Protoc. 2010 Mar;5(3):607-16. doi: 10.1038/nprot.2010.1. Epub 2010 Mar 4. PMID: 20203675.
27.    Shilpa T, Neetha M, Anilkumar G. Recent Trends and Prospects in the Copper-Catalysed “on Water” Reactions. Adv Synth Catal. 2021. 363(6): p. 1559-1582.
28.    Sharghi H, Hosseini-Sarvari M, Moeini F, Khalifeh R, Beni A. One-Pot, Three-Component Synthesis of 1-(2-Hydroxyethyl)-1H-1,2,3-triazole Derivatives by Copper-Catalyzed 1,3-Dipolar Cycloaddition of 2-Azido Alcohols and Terminal Alkynes under Mild Conditions in Water. Helvetica Chimica Acta, 2010. 93(3): p. 435-449.
29.    Kumar S, Khokra SL, Yadav A. Triazole analogues as potential pharmacological agents: a brief review. Futur J Pharm Sci. 2021;7(1):106. doi: 10.1186/s43094-021-00241-3. Epub 2021 May 25. PMID: 34056014; PMCID: PMC8148872.
30.    Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem. 2011 Feb;26(1):1-21. doi: 10.3109/14756360903524304. Epub 2010 Jun 28. PMID: 20583859.
32.    Kakefuda A, Suzuki T, Tobe T, Tsukada J, Tahara A, Sakamoto S, et al. Synthesis and pharmacological evaluation of 5-(4-biphenyl)-3-methyl-4-phenyl-1,2,4-triazole derivatives as a novel class of selective antagonists for the human vasopressin V(1A) receptor. J Med Chem. 2002 Jun 6;45(12):2589-98. doi: 10.1021/jm010544r. PMID: 12036368.