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Abstract
 Carnosine is a dipeptide abundantly found in different tissues. Several pharmacological properties 
have been attributed to carnosine. On the other hand, the precise mechanism of cytoprotection provided 
by carnosine remains obscure. The current study aimed to evaluate the direct effect of different concentra-
tions of carnosine on cellular mitochondria as an essential target involved in cytoprotection or cytotoxicity. 
Liver mitochondria were isolated and exposed to carnosine (0.01-20 mM). Mitochondrial depolarization, 
dehydrogenases activity, reactive oxygen species (ROS) formation, mitochondrial swelling and permeabil-
ity, and ATP content were assessed. On the other hand, the effect of carnosine supplementation on calcium 
(Ca2+) overload-induced mitochondrial injury was evaluated. It was found that concentrations between 
0.01-20 mM of this peptide preserved mitochondrial indices of functionality in a Ca2+ overloaded environ-
ment. These data represent regulation of mitochondrial function as a primary mechanism for the protective 
properties of carnosine.

Keywords: Apoptosis; Bioenergetics; Cell death; Cytoprotective; Peptide..................................................................................................................................

...........................................................................................................................

Corresponding Author: Hossein Niknahad, Pharmaceutical Sciences 
Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. 
Email: niknahadh@sums.ac.ir

Recieved: 29/01/2018; Accepted: 28/02/2018

Original Article

1. Introduction
	 Carnosine	(β-alanyl-L-histidine;	CA)	is	a	
dipeptide widely investigated for its physiological 
as well as pharmacological roles (1, 2). CA is pres-
ent at high concentrations in human skeletal and 
cardiac muscle, brain, kidney, stomach, and ol-
factory bulbs (3-5). Several biological roles have 
been	 identified	 for	 CA	 and	 its	 associated	 com-
pounds (6-9). Antioxidant and reactive species 
scavenging properties are essential characteristics 
of	CA	which	 are	 firmly	 attributed	 to	 the	 protec-
tive properties of this molecule (3, 10-12). CA is 
an excellent scavenger of reactive oxygen species 
including singlet oxygen, hydroxyl and superox-
ide radicals (3, 13, 14). Some investigations men-

tioned that CA effectively blunts biomembrane 
disruption both at cellular and organelle level (3, 
13, 14). CA is also repeatedly investigated for its 
protective properties against a wide range of dis-
eases and xenobiotic-induced toxicity (15-20). On 
the other hand, the direct effect of CA on isolated 
mitochondria has not been evaluated so far.
 Several investigations mentioned the posi-
tive effects of CA on mitochondria (21-23). It has 
been found that CA effectively preserves mitochon-
drial membrane potential, regulates mitochondrial 
matrix pH, and enhances mitochondrial defense 
mechanisms	(21-23).	Hence,	a	significant	part	of	
cytoprotection provided by CA might be mediated 
through its effects on cellular mitochondria. On 
the other hand, the involvement of the mitochon-
dria in regulating cytoplasmic Ca2+ level has been 
well-established (24). Cellular ROS formation and 
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oxidative stress, mitochondrial dysfunction, and 
Ca2+ overload are well-known mechanistically 
interconnected	 events	 which	 finally	 lead	 to	 cell	
death (24). In the current study, Ca2+ was used as 
a stressor to test the mitochondria-protecting prop-
erties of CA. 
 The current study was designed to evalu-
ate the direct effect of CA on cellular mitochondria 
and investigate the effect of different concentra-
tions of carnosine on this organelle aimed at un-
derstanding the mechanism(s) of CA cytoprotec-
tion.

2. Materials and methods
2.1 Chemicals
 Carnosine was purchased from Sigma 
(St. Louis, MO, USA). 4,2 Hydroxyethyl,1-
piperazineethanesulfonic acid (HEPES), 3-(N-
morpholino) propane sulfonic acid (MOPS), 
Sucrose, Dimethyl sulfoxide (DMSO), D-man-
nitol,	 Bovine	 serum	 albumin	 (BSA;	 Fatty	 acid	
free),Thiobarbituric acid (TBA), 3-[4,5dimeth-
ylthiazol-2-yl]-2,5-diphenyltetrazolium bromide 
(MTT), Rhodamine 123 (Rh 123), Coomassie bril-
liant blue, Ethylene glycol-bis (2-aminoethylether)-
N,N,N′,N′-tetraacetic	 acid	 (EGTA),	 Hydroxy-
methyl amino methane hydrochloride (Tris-HCl), 
Sodium succinate, and Ethylenediaminetetraacetic 
acid (EDTA) were purchased from Merck (Darm-
stadt,	 Germany).	All	 salts	 (Analytical	 grade)	 for	
preparing buffer solutions were purchased from 
Merck	(Darmstadt,	Germany).

2.2. Animals 
 Male BALB/c mice (20-30 g) were  
obtained from Animal Breeding Center of Shiraz 
University of Medical Sciences, Shiraz, Iran. Mice 
were housed in cages on wood-chip bedding at a 
temperature of 23±2 °C and relative humidity of 
≈40%.	Animals	had	 free	access	 to	 tap	water	 and	
a standard chow diet (Behparvar®, Tehran, Iran). 
Mice were handled according to the animal han-
dling protocol approved by thelocal ethics com-
mittee at Shiraz University of Medical Sciences, 
Shiraz, Iran (#15034). 

2.3. Liver Mitochondria isolation
 Mice liver mitochondria were isolated as 

previously	 described	 (25).	 Briefly,	 animals	 were	
anesthetized (ketamine/xylazine, 50/10 mg/kg, i.p) 
and their liver was excised and washed with ice-
cold	sodium	chloride	(saline	0.9%)	(25,	26).	The	
liver was homogenized in a buffer solution con-
taining 225 mM sucrose, 70 mM  mannitol, 0.5 
mM	EGTA,	0.1%	essential	fatty	acid-free	bovine	
serum albumin (BSA), 2 mM HEPES (pH=7.4), 
at  a 10:1 buffer to liver tissue (v/w) ratio (20, 25). 
Afterwards, the liver homogenate was centrifuged 
at 1,000×g for 10 minutes at 4 °C to remove in-
tact cells and nuclei. The supernatants were further 
centrifuged (15,000×g, 4 °C, 10 minutes) to help 
precipitate the heavy membrane fractions (mito-
chondria) (27, 28). This step was repeated four 
times using fresh buffer medium. As mentioned, 
all manipulations for liver mitochondria isolation 
were performed at 4 °C or on ice to minimize mi-
tochondrial injury (25).

2.4. Mitochondrial Swelling assay
 Mitochondrial swelling was assessed us-
ing	the	light	scattering	method	(25).	For	this	pur-
pose, the isolated mitochondria were suspended in 
a buffer containing 125 mM sucrose, 65 mM KCl, 
10 mM Hepes-KOH, and pH=7.2 (29, 30). Light 
absorbance	at	λ=540	nm	was	monitored	(Constant	
temperature	of	30	°C)	with	a	FLUOstar	Omega® 
multifunctional	fluorescent	microplate	reader	(25,	
31, 32). It is accepted that a decrease in light ab-
sorbance is related to the increase in mitochondrial 
volume (32). Therefore, as mitochondria are more 
swelled, the differences between light absorbance 
of the two time points are higher. The differences 
between	 the	absorbance	of	samples	at	λ=540	nm	
(ΔOD540	 nm)	 were	 determined	 and	 the	 results	
were reported as mitochondrial maximal swelling 
amplitude (25, 32).

2.5. Mitochondrial membrane potential
	 The	uptake	of	the	cationic	fluorescent	dye,	
rhodamine 123 by polarized mitochondria, was 
used for the estimation of mitochondrial mem-
brane	potential	(25,	33).	For	this	purpose,	the	mi-
tochondrial fractions (0.5 mg protein/ml) were in-
cubated	with	rhodamine	123	(Final	concentration	
of 10 µM ) in a buffer solution containing 125 mM 
sucrose, 65 mM KCl, 10 mM HEPES, pH=7.2 (30 
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min, 37 ºC, in the dark) (32, 33). Samples were 
centrifuged	(10,000	g,	1	minute,	4	ºC)	and	the	flu-
orescence intensity of the supernatant was moni-
tored	using	a	FLUOstar	Omega® multifunctional 
fluorescent	microplate	reader	at	the	λexcitation=485 
and	λemission=525 nm (25, 34).

2.6. Mitochondrial ATP level
 A luciferase-luciferin-based kit (Promega 
ENLITEN®) was used to determine mitochondrial 
ATP reservoirs (20, 35). Buffer solutions and mi-
tochondrial samples were prepared based on the 
kit	 instructions.	 Finally,	 the	 luminescence	 inten-
sity	of	samples	was	assessed	at	λ=560	nm	using	a	 
FLUOstar	 Omega® multifunctional microplate 
reader	 (36).	 For	 standardization	 of	 the	 data,	 the	
protein concentrations of samples were deter-
mined by the Bradford method (37).

2.7. Mitochondrial dehydrogenases assay
 A colorimetric method based on the reduc-
tion of the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-di-
phenyltetrazolium bromide (MTT) was applied for 
the determination of mitochondrial dehydrogenas-
es	activity	(32,	38).	Briefly,	mitochondrial	suspen-
sion in a buffer solution (1 mM EDTA, 320 mM 
sucrose, and 10 mM Tris-HCl, pH=7.4), was incu-
bated	with	40	µl	of	MTT	(0.4%	w:v;	37	°C	for	30	
minutes, in the dark) (39, 40). Then, samples were 
centrifuged (10,000 g, 5 minutes) and the product 
of purple formazan crystals was dissolved in 1 ml 
dimethyl sulfoxide (DMSO). Afterwards, 0.1 ml 
of the dissolved formazan was added to a  96 well 
plate.	 Finally,	 the	 optical	 density	 (OD)	 at	 λ=570	
nm was measured with an EPOCH plate reader 
(BioTek® Instruments, Highland Park, USA) (32, 
38).

2.8. Reactive oxygen species (ROS) in isolated 
liver mitochondria
 The ROS measurement was performed us-
ing	the	fluorescent	probe	DCFH-DA	(25,	41-43).	
Briefly,	isolated	liver	mitochondria	were	incubat-
ed in a respiratory buffer solution containing 125  
mM sucrose, 65 mM KCl, 10 mM HEPES, 20 µM 
Ca2+,	sodium	succinate	5	mM,	pH=7.2	(25).	Fol-
lowing	this	step,	DCFH-DA	was	added	(Final	con-
centration,	10	μM)	to	mitochondria	and	then	incu-

bated	for	30	min	at	37	ºC.	Then,	the	fluorescence	
intensity	of	DCF	was	measured	using	a	FLUOstar	
Omega®	 multifunctional	 fluorescent	 microplate	
reader	(λexcitation=485	nm	and	λemission=525 nm) 
(25).

2.9. Statistical analysis
 Data are given as the Mean±SD. Data 
comparison was performed by the one-way anal-
ysis of variance (ANOVA) with Tukey’s multi-
ple comparison test as the post hoc. Differences 
were	 considered	 statistically	 significant	 when	 
P-value <0.05.

3. Results 
 Isolated liver mitochondria were incubat-
ed with different concentrations of CA (0.01 mM-
160	mM).	CA	treatment	(0.01-10	mM)	significant-
ly enhanced mitochondrial indices of functionality 
in	 isolated	mice	 liver	mitochondria	 (Figure	1).	 It	
was found that CA administration (0.01-10 mM) 
improved mitochondrial membrane potential, 
promoted mitochondrial ATP metabolism, and 
increased mitochondrial dehydrogenases activity 
(Figure	1).	
 The mitochondrial protecting properties 
of CA was also assessed in a Ca2+-overloaded 
environment.	For	this	purpose,	isolated	mitochon-
dria were incubated with Ca2+ (200 µM) and CA 
(0.01-20	mM;	 30	minutes	 before	Ca2+)	 (Figures	
2 and 3). It was found that CA supplementation 
(0.01,	 0.05,	 0.1	 and	 1	 mM)	 significantly	 pre-
vented Ca2+-induced mitochondrial dysfunction 
as judged by higher ATP content, increased mi-
tochondrial dehydrogenases activity, and preven-
tion of mitochondrial depolarization in CA-treated 
groups	(Figures	2	and	3).	Moreover,	mitochondrial	
permeabilization	and	ROS	formation	were	signifi-
cantly lower in CA-treated isolated mitochondria  
(Figures	2	and	3).

4. Discussion 
 Carnosine (CA) is a dipeptide abundant-
ly found in different mammalian tissues. Several 
physio/pharmacological roles are attributed to this 
peptide. It has been established that CA counter-
acts reactive oxygen and nitrogen species (1, 10, 
13, 44, 45), chelates metal ions (46, 47), and pro-
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tects biological systems against oxidative stress 
and its deleterious consequences (1, 10, 13, 44, 
45). Another essential physiological role for CA 
includes intracellular pH control (48, 49). The ef-
fect of this peptide on different systems including 
cardiovascular, immune, and renal systems has 
been widely investigated (44, 50-52). Despite the 

tremendous physiological and pharmacological ef-
fects assigned to CA, its precise mechanism(s) of 
cytoprotection/toxicity remains unclear. The cur-
rent study was designed to investigate the impact 
of various CA concentrations on cellular mito-
chondria	as	a	significant	target	for	cytoprotection/
cytotoxicity.
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Figure	1.	Concentration-response of carnosine on mitochondrial indices of functionality.
Data are given as Mean±SD (n=8).
*Indicates	significantly	different	as	compared	with	control	(0	mM	carnosine)	(P<0.01).

 

Figure	2. Calcium (Ca2+)-induced mitochondrial permeabilization and swelling in the presence of carnosine.
Data are given as Mean±SD (n=8).
***Indicates	significantly	different	as	compared	with	control	(P<0.001).
aIndicates	significantly	different	as	compared	with	Ca2+ 200 µM (P<0.001).
bIndicates	significantly	different	as	compared	with	Ca2+ 200 µM (P<0.05).
ns:	not	significant	as	compared	with	Ca2+ 200 µM (P>0.05).
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 Several investigations have mentioned that 
different	 pathological	 states	 might	 benefit	 from	
exogenous CA supplementation (44, 50-52). The 
protective effects of this peptide against nervous 
system disorders, aging, cardiovascular complica-
tions, and xenobiotic-induced organ injury have 
been reported (44, 50-52). As mentioned, CA is a 
well-known antioxidant and scavenger of reactive 
intermediates (5, 44, 53, 54). This peptide is also 
reported to boost antioxidant defense mechanisms 
and preserve cellular glutathione reservoirs (17, 
50,	 55).	 CA	 could	 efficiently	 protect	 biological	
targets (e.g., DNA, biomembranes lipid) against 
reactive species (3, 9). Although the antioxidant 
and reactive species scavenging properties of CA 
might	 play	 a	 significant	 role	 in	 its	 protective	 ef-
fects, the exact mechanism of protection provided 
by this peptide has not been precisely cleared in 
most cases. The data obtained from the current 
study revealed that cellular mitochondria is also a 
critical target for the cytoprotection provided by 

CA.
 The involvement of CA in the regulation of 
mitochondria-mediated cell death has been previ-
ously mentioned in different experimental models 
(21-23). The data obtained from the current study 
revealed that carnosine (0.01 mM- 10 mM) can 
effectively preserve mitochondrial functionality 
against Ca2+ overload as a universal mechanism 
involved in mitochondria-mediated cell death (24). 
 The buffering capacity of CA has been 
mentioned as an essential feature of this peptide 
(56). It has been established that CA preserves 
cellular pH at its physiological level and prevents 
cell injury (56, 57). Physiologically, the buffering 
activity of CA becomes crucial in highly active 
tissues such as skeletal muscles where the acidi-
fication	 of	 the	 cellular	 environment	 commonly	
takes place (56, 57). On the other hand, it has been 
proposed that CA buffering capacity might play a 
role in enhancing mitochondrial functionality (23). 
Previous	studies	indicate	that	carnosine	efficiently	
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Figure	3. Effect of carnosine on Ca2+-induced mitochondrial dysfunction.
Isolated liver mitochondria were incubated with Ca2+ (200 µM) alone or in combination with carnosine. Carnosine 
was added 15 minutes before Ca2+ challenge. Data are given as Mean±SD (n=8).
***Indicates	significantly	different	as	compared	with	control	(P<0.001).
aIndicates	significantly	different	as	compared	with	Ca2+ 200 µM (P<0.001).
bIndicates	significantly	different	as	compared	with	Ca2+ 200 µM (P<0.05).
ns:	not	significant	as	compared	with	Ca2+ 200 µM (P>0.05).
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preserves mitochondrial membrane potential (23, 
58). Mitochondrial pH gradient and membrane po-
tential are essential factors for mitochondrial func-
tion (23). Hence, chemicals which are capable of 
localizing in the cellular mitochondria and regulat-
ing matrix pH can conserve mitochondrial mem-
brane potential. It has been found that CA might 
play a role in mitochondrial matrix pH regulation 
(23). In the current study, we found that mito-
chondrial membrane potential, as an index of H+ 
gradient, was higher in CA-treated mitochondria 
(0.01-10	mM)	(Figure	1).	The	buffering	property	
of carnosine might help preserve the proper func-
tion of mitochondrial matrix localized enzymes. 
All	these	findings	could	indicate	the	importance	of	
CA in regulating mitochondrial function and en-
ergy metabolism. 
 As mentioned, the relevance of mitochon-
drial protecting properties of carnosine against 
xenobiotic-induced toxicity has been proposed in 
different previous investigations (1, 2, 18-20). It 
has been mentioned that this peptide prevents oxi-
dative stress, apoptosis, and cell death in different 
experimental models (19, 59-63). However, the di-
rect effect of various concentrations of carnosine 
on mitochondria is obscure. In the current inves-
tigation, we found that carnosine prevented mi-

tochondrial dysfunction against Ca2+ overload as 
the major cellular signaling molecule responsible 
for mitochondrial dysfunction and its associated 
events (24). Hence, carnosine might be applicable 
not only against xenobiotic-induced mitochondrial 
dysfunction (33, 64-70) but also against a wide 
range of mitochondria-linked diseases.
 Previous investigations applied very high 
and possibly biologically-irrelevant concentra-
tions/doses of CA (71-73). It may be possible to 
design	more	efficient	similar	structures	which	af-
fect cellular mitochondria and energy metabolism. 
On	 the	other	 hand,	 efficient	mitochondria-target-
ing drug delivery systems might help deliver CA 
to the cellular power plants. Such investigations 
might help conquer CA bioavailability obstacles 
and develope carnosine and its similar structures 
as promising therapeutic agents against mitochon-
dria-linked disorders.
 Collectively, our data suggest cellular mi-
tochondria as an essential target for the cytopro-
tective properties of CA. Indeed further research 
on the effects of CA on different mitochondrial 
components will enhance our understanding about 
the pleiotropic pharmacological properties of this 
naturally occurring peptide.

 

Figure	4. A schematic representation of the effect of carnosine on cellular mitochondria. The mitochondria protec-
tion	or	mitochondria	dysfunction	depends	on	the	carnosine	concentration.	ETC:	Electron	Transfer	Chain;	mPT:	Mi-
tochondrial Permeability Transition.
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