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Abstract
 The cholestatic liver disease ensues with a hepatic accumulation of cytotoxic molecules. Several 
hydrophobic bile acids are known as cytotoxic agents accumulated in the liver during cholestasis. Cheno-
deoxycholic acid (CDCA) is a toxic hydrophobic bile acid. Oxidative stress and mitochondrial dysfunction 
are well-known mechanisms of bile acid cytotoxicity. In the current study, CDCA effect on isolated liver 
mitochondria was monitored by analyzing the changes in mitochondrial dehydrogenases activity, mito-
chondrial permeabilization, and mitochondrial membrane potential. On the other hand, taurine (1 mM) and 
carnosine (1 mM) were added as potential protective agents against CDCA-induced mitochondrial dys-
function. Increasing the concentrations of CDCA (100 µM-1000 µM) impaired mitochondrial membrane 
potential, decreased mitochondrial dehydrogenases activity, and enhanced mitochondrial permeabilization 
and swelling. It was found that taurine and carnosine supplementation preserved mitochondrial function 
in the presence of CDCA. The results mention that toxicologically relevant concentrations of CDCA im-
paired mitochondrial function. On the other hand, taurine and carnosine might be applicable as protective 
agents against bile acids-induced mitochondrial impairment and toxicity.
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1. Introduction
 Bile acid synthesis is a vital function of 
hepatocytes. On the other hand, any defect in the 
bile acid transportation from hepatocytes to the 
gastrointestinal (GI) tract could ensue with del-
eterious consequences (1-3). Most bile acids are 
hydrophobic molecules with detergent properties 
(4, 5). These chemicals are well-known biomem-
brane disruptors and protein degrading agents  
(4, 5). Oxidative stress and its following events are 
the proposed mechanisms involved in the bile acid 

cytotoxicity (4, 6-13). Chenodeoxycholic acid 
(CDCA) (Figure 1) is a hydrophobic cytotoxic bile 
acid, which accumulates in hepatocytes during 
cholestasis.
 At the cellular level, mitochondria are 
critical targets for bile acid toxicity (6, 10, 12, 14-
19). It has been well-characterized that bile acids 
deteriorate the mitochondrial function (6, 10, 12, 
14-19). The collapse of mitochondrial membrane 
potential, mitochondrial permeabilization and 
swelling, impaired mitochondrial ATP biosynthe-
sis, and release of cell death mediators are attrib-
uted to bile acid cytotoxicity (6, 10, 12, 14-19). 
These events could finally lead to the energy crisis, 
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cell death, and organ injury.
 Taurine is the most abundant free amino 
acid in the body (20). Several biological roles have 
been attributed to this amino acid (21, 22). The 
protective properties of taurine have repeatedly 
been mentioned in different experimental models 
(23-32). Interestingly, taurine is a good modulator 
of cellular mitochondrial function (32-35). It has 
been found that this amino acid efficiently mitigat-
ed mitochondria-mediated cytotoxicity of xenobi-
otics (32, 36-39). In the current study, the potential 
protective properties of taurine have been evalu-
ated in the isolated liver mitochondria exposed to 
toxic CDCA concentrations.
 Carnosine is an endogenous dipeptide 
with a wide range of pharmacological properties 
(40-46). It has been found that carnosine efficient-
ly interacts with reactive species (e.g., cytotoxic 
aldehydes) and ameliorates oxidative stress in dif-
ferent experimental models (40-45, 47-50). On 
the other hand, the positive effects of this peptide 
on cellular mitochondria has been also mentioned 
in the previous studies (41, 51-53). In the current 
study, carnosine has been applied to preserve mi-
tochondrial function in the presence of CDCA.

2. Materials and methods 
2.1. Chemicals
 Carnosine and taurine were purchased from 
Sigma (St. Louis, MO, USA).4,2 Hydroxyethyl,1-
piperazineethanesulfonic acid (HEPES), fatty acid 
free bovine serum albumin (BSA; Fraction V), 
3-(N-morpholino)propane sulfonic acid (MOPS), 
dimethyl sulfoxide (DMSO), D-mannitol, thiobar-
bituric acid (TBA), ethylene glycol-bis (2-amino-
ethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 
chenodeoxycholic acid (CDCA), trichloroacetic 

acid (TCA), 3-[4,5dimethylthiazol-2-yl]-2,5-
diphenyltetrazolium bromide (MTT), rhoda-
mine123, coomassie brilliant blue, hydroxymethyl 
aminomethane hydrochloride (Tris-HCl), sodium 
succinate, and ethylenediaminetetraacetic acid 
(EDTA) were purchased from Merck (Darmstadt, 
Germany). All salts for preparing buffer solu-
tions (analytical grade) were obtained from Merck 
(Darmstadt, Germany).

2.2. Animals
 Male BALB/c (20-25 g) were obtained 
from Animal Breeding Center of Shiraz Univer-
sity of Medical Sciences, Shiraz Iran. Mice were 
housed in cages with wood-chip bedding at a 
temperature of 23±1 °C and relative humidity of 
≈40%. Animals had free access to a standard ro-
dents chow diet (Behparvar®, Tehran, Iran) and tap 
water. Mice were fasted 24 h before the mitochon-
dria isolation procedure. Animals were handled in 
compliance with the guidelines of the laboratory 
animals care and use approved by an institutional 
ethics committee in Shiraz University of Medical 
Sciences, Shiraz, Iran (15115/14883). 

2.3. Liver tissue mitochondria isolation and ex-
perimental setup
 Mice liver mitochondria were isolated 
based on the differential centrifugation method 
(54-56). Animals were anesthetized (Thiopental, 
80 mg/kg, i.p) and the liver was excised, washed, 
and minced with an ice-cooled saline solution 
(Sodium chloride 0.9%) (54, 57, 58). Then, the 
liver tissue was homogenized in a buffer contain-
ing 75 mM mannitol,  220 mM sucrose, 0.5 mM 
EGTA,  2 mM HEPES, 0.1% essentially fatty acid-
free bovine serum albumin and pH=7.4 at a 10:1 

 

Figure 1. Chemical structure of chenodeoxycholic acid as a hydrophobic cytotoxic bile acid.
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buffer to tissue (v:w) ratio (54). Afterwards, tis-
sue homogenate was centrifuged to remove intact 
cells and nuclei (1000 g for 10 min at 4 °C). The 
supernatant was further centrifuged at 10,000 g  
(4 °C for 10 min) to precipitate the heavy mem-
brane fractions (mitochondria). This step was re-
peated three times using fresh buffer medium to 
increase the mitochondrial yield. As mentioned, 
all manipulations for mitochondrial isolation were 
performed at 4 °C or on ice to preserve mitochon-
drial intactness (54).
 In all experiments using taurine and car-
nosine as the protecting agents, isolated liver mito-
chondria were pre-incubated with these chemicals 
15 min before CDCA exposure. The isolated liver 
mitochondria were exposed to CDCA for 30 min, 
then mitochondrial function was assessed. Taurine 
and carnosine were dissolved in mitochondria me-
dium. CDCA was dissolved in DMSO. The maxi-
mum volume of DMSO added to the mitochondria 
preparations was 5 µl/10 ml incubation media.

2.4. Mitochondrial dehydrogenases activity (MTT 
assay)
 The methyl tetrazolium (MTT) assay was 
applied as a colorimetric method for determination 
of mitochondrial dehydrogenases activity in  the 
isolated liver mitochondria (59-61). Briefly, mito-
chondrial suspension (1 mg protein/ml) in a buffer 
containing 0.32 M sucrose, 1 mM EDTA, and 10 
mM Tris-HCl, pH=7.4, was incubated with 40 µl 
of MTT (0.4% w:v) at 37 °C (30 min, in the dark) 
(56). Samples were centrifuged (10,000 g, 15 min) 
and the product of the purple formazan crystals 
was dissolved in DMSO (1 ml). Then, 100 µl of 
the dissolved formazan was added to a 96 well 
plate, and the optical density (OD) at λ=570 nm 
was assessed with an Epoch plate reader (BioTek® 
Instruments, Highland Park, USA) (58, 62).

2.5. Mitochondrial depolarization
 The mitochondrial ability to uptake the 
cationic fluorescent dye, rhodamine 123, was used 
as an index of mitochondrial depolarization (54, 
63-67). For this purpose, the mitochondrial frac-
tions (0.5 mg protein/mL) were incubated with 
rhodamine 123 (final concentration of 10 µM) in 
a buffer containing 65 mM KCl, 125 mM sucrose, 

5 mM sodium succinate, 20 µM Ca2+, and 10 mM 
HEPES, pH=7.2 (20 min, 37 ºC) (61, 68). Samples 
were centrifuged (10,000 g, 5 min, 4 ºC) and the 
fluorescence intensity of the supernatant was mon-
itored using a FLUOstar Omega® multifunctional 
microplate reader (LABTECH, Germany) at the 
excitation and emission wavelengths of λ=485 nm 
and λ=525 nm, respectively (54).

2.6. Mitochondrial permeabilization and swelling 
assay
 Mitochondrial swelling was assessed by 
the light scattering method as previously described 
(54). Briefly, the isolated liver mitochondria prep-
arations (0.5 mg protein/mL) were suspended in 
swelling buffer (125 mM sucrose, 65 mM KCl, 
10 mM HEPES-KOH, 20 µM Ca2+, pH=7.2). The 
light absorbance at λ=540 nm was monitored dur-
ing 30 min of incubation at a constant tempera-
ture of 30 °C (54). A decreased light absorbance is  
consistent with an increase in mitochondrial 
volume (54). Hence, as mitochondria are more 
swelled, the differences between light absorbance 
of two-time points are higher. The differences 
between the absorbance of samples at two time 
points (10 and 30 min) were assessed and report-
ed as maximal mitochondrial swelling amplitude 
(ΔOD540 nm) (54).

2.7. Statistical analysis
 Data are given as the Mean±SD. Data 
comparison was conducted by the one-way analy-
sis of variance (ANOVA) with Tukey’s multiple 
comparison tests as the post hoc. Differences were 
considered statistically significant when P<0.05.

3. Results 
 The effect of CDCA on mitochondrial de-
hydrogenases activity (MTT test) has been shown 
in Figure 2. It was found that concentrations of 
CDCA ranging from 100 µM-1000 µM caused a 
significant decrease in mitochondrial dehydroge-
nases activity as compared with the control group 
(Figure 2). On the other hand, pre-incubation of 
liver mitochondria with taurine (1 mM) and/or 
carnosine (1 mM) prevented CDCA-induced de-
crease in mitochondrial dehydrogenases activity 
(Figure 2).
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Incubation of the isolated mice liver mitochondria 
with different concentrations of CDCA increased 
mitochondrial permeabilization and swelling  
(Figure 3). It was found that taurine and carnosine 
treatment ameliorated CDCA-induced mitochon-
drial permeabilization and swelling (Figure 3).
 Concentrations of 100-1000 µM of CDCA 
abolished mitochondrial capability of rhodamine 
123 uptake as an index of mitochondrial mem-

brane potential (Figure 4). On the other hand, it 
was found that taurine (1 mM) and carnosine (1 
mM) supplementation prevented CDCA-induced 
mitochondrial depolarization (Figure 4).

4. Discussion
 Cholestasis is the stoppage of bile flow 
from hepatocytes to the GI tract. Several patholog-
ical conditions, as well as a wide range of drugs 

Figure 2. Mitochondrial dehydrogenases activity in the presence of the cytotoxic bile acid chenodeoxycho-
lic acid (CDCA), taurine (Tau), and carnosine (Carn).
Data are given as Mean±SD (n=8).
*Indicates significantly different as compared with control (0 µM CDCA) (P<0.001).
aIndicates significantly different as compared with CDCA-treated group (P<0.001).
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Figure 3. Mitochondrial permeabilization and swelling in the presence of chenodeoxycholic acid (CDCA), 
taurine (Tau), and carnosine (Carn).
Data are given as Mean±SD (n=8). 
***Indicates significantly different as compared with control (0 µM CDCA) (P<0.001).
aIndicates significantly different as compared with CDCA-treated group (P<0.01).
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and xenobiotics, are capable of inducing cholesta-
sis (1-3, 69). Despite its etiology, accumulation of 
highly toxic substances such as bile acids is the 
common outcome of cholestasis. Chenodeoxycho-
lic acid (CDCA) is one of the cytotoxic hydropho-
bic bile acids accumulated in hepatocytes during 
cholestasis (Figure 1).
 The prominent role of mitochondria in 
cellular energy metabolism, as well as its role in 
cell death process and apoptosis, make it a critical 
target for xenobiotics toxicity (70, 71). Several in-
vestigations suggest that cellular mitochondria are 
the principal targets of bile acids-induced injury 
(6, 10, 12, 14-19). Although the exact mechanisms 
of mitochondrial impairment induced by toxic bile 
salts are unclear, the promotion of mitochondrial 
permeabilization, release of cell death mediators, 
dissipation of mitochondrial membrane potential, 
and impairment of mitochondrial energy metabo-
lism are the well-characterized events associated 
with cholestasis-induced liver injury (6, 10, 12, 
14-19). In the current study, our data indicate that 
mitochondrial impairment is involved in the mech-
anism of injury induced by CDCA as a toxic bile 
acid. On the other hand, we found that administra-
tion of taurine and/or carnosine could be a protec-
tive strategy against CDCA-induced mitochondri-
al dysfunction.
 The cytoprotective properties of taurine 
have been repeatedly mentioned in previous stud-
ies (23-32). Taurine has been proposed to poses 

its protective properties through different mecha-
nisms including regulation of oxidative stress, 
prevention of biomembrane lipid peroxidation, 
and modulation of mitochondrial function (21-32). 
Some studies also mentioned that the antioxidant 
properties of this amino acid might be directly as-
sociated with its effects on cellular mitochondria 
(72-74). Interestingly, taurine plays a vital role 
in the structure of mitochondrial tRNA (74, 75). 
Hence, a proper level of this amino acid in mito-
chondria could help in regulating mitochondrial 
protein synthesis machinery and efficient mito-
chondrial respiratory complexes function. On the 
other hand, it has been found that taurine might 
act as a regulator of mitochondrial matrix pH (34). 
Mitochondrial matrix pH is a critical factor for 
preservation of mitochondrial membrane potential 
(ΔΨ). All these data mention a role for taurine in 
the regulation of mitochondrial function.
 In the current study, it was found that 
taurine supplementation preserved mitochondrial 
function upon interaction with the toxic bile acid 
CDCA. Hence, administration of this amino acid 
could serve as a protective strategy against bile 
acids-induced mitochondrial impairment and or-
gan injury. Risk assessment studies revealed that 
taurine is safe even at high doses (76, 77). There-
fore, this amino acid might be clinically applicable 
against cholestasis-induced organ injury.
 Carnosine is a dipeptide widely investi-
gated for its protective properties in different ex-

Figure 4. Chenodeoxycholic acid (CDCA)-induced mitochondrial depolarization.
Data are given as Mean±SD (n = 8). Tau: Taurine; Carn: Carnosine.
*Indicates significantly different as compared with control (0 µM CDCA) (P<0.001).
aIndicates significantly different as compared with CDCA-treated group (P<0.001).

 

 

C D C A C o n c e n tra tio n (M )

M
it

o
c

h
o

n
d

ri
a

l
D

e
p

o
la

ri
z

a
ti

o
n

(R
h

o
d

a
m

in
e

1
2

3
F

lu
o

re
s

c
e

n
t

In
te

n
s

it
y

)

0

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0

0

*
*

*

aa

C D C A

C D C A + T a u 1 m M

C D C A + C a rn 1 m M

100 250 500 1 000

*
a

a

103



Trends in Pharmaceutical Sciences 2018: 4(2): 99-108.

Reza Heidari et al.

perimental models (40-45, 47-50). Carnosine is a 
well-known antioxidant and scavenger of different 
reactive species (46, 78-80). Hence, this peptide 
could efficiently protect biological targets against 
xenobiotics toxicity. The positive effects of car-
nosine on cellular mitochondria have also been 
mentioned in previous studies (51, 81). It has been 
found that carnosine preserved mitochondrial 
membrane potential, prevented mitochondrial per-
meabilization, and enhanced mitochondrial energy 
metabolism and ATP production (51, 82). In line 
with previous findings, the protective properties 
of carnosine were evident against CDCA toxicity 
in the current investigation. All these data might 
mention the potential protective properties of car-
nosine against cholestasis-induced liver injury. 
On the other hand, as carnosine is an endogenous 
molecule, it might be readily applicable in clinical 
situations.

 Collectively, our data mention mitochon-
drial toxicity of the hydrophobic bile acid CDCA 
and the potential protective properties of taurine 
and carnosine supplementation. Indeed, more 
studies in different experimental models or human 
subjects of cholestasis could reveal the therapeutic 
significance of these data.
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