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Abstract
 DNA double strand-breaks (DSBs) are the most deleterious lesions that can affect the genome 
of living beings and are lethal if not quickly and properly repaired. Recently, N-phenyl ureidobenzene-
sulfonates (PUB-SOs) as tubulin inhibitors that block cell cycle progression in S-phase and induce DNA 
DSBs are discovered. Here, a set of PUB-SOs derivatives were applied to quantitative structural activity 
relationship (QSAR) analysis. A series of chemometric methods like MLR, FA- MLR, PCR and partial 
least squared included in variable selection genetic algorithm (GA-PLS), were used to relate structural 
features of these compounds with their anti-proliferative activity against MCF-7 cell line. New potent lead 
compounds were also designed based on new structural patterns using in silico-screening study. Molecu-
lar docking studies of these compounds on DNA and tubulin were conducted. The results obtained from 
validated docking protocols indicate that the main amino acids located in the active site cavity in charge of 
essential interactions with tubulin are Ala30, Lys B254, Asn B258, Met B259, Asn A101, Glu A183, Thr 
A179, Leu B255, Ser A178 and Gln B247and the most important base pairs inside the minor groove of 
DNA responsible for essential intercalation with DNA are G2, G4, G10, G12, A5, A6, C9 and C11. 
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1. Introduction
 Spontaneous DNA damage occurs  
frequently in living cells. It is estimated that the 
number of DNA lesions including base losses,  
single- and double-strand breaks (DSBs) can be 
close to 100,000 lesions per cell per day (1, 2). 
On one hand, cells exploit a variety of specialized 
DNA repair mechanisms to restore the integrity of 
the DNA. These DNA repair mechanisms collec-
tively termed the DNA damage response are re-
sponsible to detect DNA damage and arrest  cell 
cycle to repair DNA lesions (1, 3). Among all iden-

tified DNA damages, DSBs are one of the most cy-
totoxic lesions and the most difficult DNA lesion 
to repair (4).
 DSBs are particularly troublesome  
because they can lead to cell death if not repaired. 
And, if not repaired correctly, can cause deletions, 
translocations, and fusions in the DNA. These 
consequences are collectively referred to as ge-
nomic rearrangements, and are commonly found 
in cancerous cells (5, 6).
 In this context, the development of new 
anticancer agents inducing DNA DSBs is a prom-
ising strategy in cancer drug therapy. Recently a 
new class of anticancer agents referred to as N-
phenyl ureidobenzenesulfonate derivatives (PUB-



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

Azar Mostoufi et al.

Table 1. Chemical structure of the compounds used in this study and their experimental and cross-vali-

dated predicted activity as well as their docking binding energy, on DNA and tubulin.

 

Name R
MCF-7

Exp.pIC50 Pred.pIC50 ∆E1 for DNA (kcal/mol) ∆E1 for Tobulin (kcal/mol)
1a 2-iProp 5.744727 5.710421 -9.31 -9.46

2a 2-OMe 4.721246 4.742597 -9.56 -8.14

3a 2-OEt 5.769551 5.908556 -8.69 -8.34

4a 2-F 5.221849 5.028002 -9.62 -8.65

5a 2-Cl 5.376751 5.300363 -8.92 -8.97

6a 3-I 5.821023 5.839865 -9.86 -9.47

7a 2-NO2 5.130768 5.218836 -7.04 -7.46

8a 2,4-Me 5.408935 5.313071 -9.51 -8.65

9a 2,5-Me 5.721246 5.758473 -9.48 -9.84

SOs) were developed (1, 7). Beside apparent  
structure similarities between PUB-SOs and phe-
nyl 4-(2-oxoimidazolidin-1-yl)-benzenesulfo-
nates, their mechanisms of action are different 
and can vary from blocking the cell cycle progres-
sion in S-phase and inducing the phosphorylation 
of histone H2AX (gH2AX), which evidences the 
induction of DNA DSBs instead of the expected 
arrest of the cell cycle in the G2/M-phase, to inhi-
bition of tubulin (8, 9). 
 In this work, for a set of PUB-SOs deriva-
tives being able to inhibit tubulin and induce  DNA 
DSBs, two different drug design methodologies 
has been applied: QSAR and molecular docking 
simulations. In a comprehensive study, to describe 
the physicochemical properties of the molecules, 
we used a very large descriptor set such as geo-
metrical, functional, constitutional, topological 
groups, atom-centered fragments, 2D autocorre-
lation, quantum, electrostatic and chemical. Also, 
to model the relationship between the structural 
characteristics and anti-proliferative activity of the 

studied compounds against MCF7 cancer cell line, 
different chemometrics methods were used:
 1) multiple linear regression (MLR), 
 2) factor analysis-based multiple linear  
regression (FA-MLR), 
 3) principal component regression (PCR) 
and 
 4) partial least squared combined with 
genetic algorithm for variable selection (GA-
PLS). Also, on all compounds of dataset and those  
designed, a validated molecular docking simula-
tion technique was also applied to achieve  their 
detailed molecular binding site in intercalating 
with base pairs of DNA and interacting with major 
amino acids in the active site of tubulin. 
 
2. Materials and methods
2.1. Data set
 A dataset comprised of 54 PUB-SOs de-
rivatives as a set of potent dual inhibitor of tubu-
lin and inducer of DNA DSBs are selected for this 
study (1). Table 1 includes structural features and 

84



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

QSAR and docking on N-phenyl ureidobenzenesulfonates 

10a 2,6-Me 5.431798 5.424931 -9.37 -9.35

11a 2,4-F 5.031517 5.093708 -8.94 -8.45

12a 2,6-F 5.318759 5.194877 -9.61 -8.35

13a 2,4,5-Me 5.522879 5.456428 -9.59 -9.21

14a 2,4,5-Cl 5.920819 5.850512 -10.51 -9.28

15a 2,4,6-Cl 5.769551 5.934567 -10 -9.12

16a 3-Et 5.148742 5.178438 -9.43 -8.97

17a 3-Prop 5.408935 5.296416 -10.09 -9.21

18a 3-OMe 5.376751 5.140660 -9.38 -9.05

19a 3-OEt 5.481486 5.411157 -10.08 -9.14

20a 3-F 5.107905 5.058320 -8.84 -8.29

21a 3-Cl 5.431798 5.348047 -9.53 -9.18

22a 3-Br 5.585027 5.520773 -9.61 -9.36

23a 3-I 5.744727 5.991039 -9.58 -9.33

24a 3-NO2 4.744727 4.914188 -7.95 -8.13

25a 3,5-Me 5.537602 5.662556 -9.91 -8.71

26a 3,4-OMe 4.823909 5.193080 -10.22 -8.57

27a 3,5-OMe 5.69897 5.726583 -9.84 -8.71

28a 3,4-F 5.05061 4.953434 -8.66 -8.29

29a 3,5-F 5.244125 5.276152 -8.7 -8.31

30a 3,5-Cl 6 5.893710 -10.32 -9.16

31a 3,5-Br 6.39794 6.243301 -9.75 -10.16

32a 3,4,5-Me 5.026872 5.106650 -10.52 -9.32

33a 3,4,5-OMe 6.180456 5.692793 -9.47 -8.46

34a 3,4,5-F 4.946922 5.061280 -8.83 -8.27

35a 4-Et 4.79588 4.724407 -9.5 -9.06

36a 4-Prop 4.886057 4.828144 -9.57 -9.56

37a 4-tertBut 4.769551 4.848530 -10.68 -9.08

38a 4-OEt 5.022276 5.084198 -9.39 -8.77

39a 4-OBut 5.148742 5.018063 -10.16 -8.69

40a 4-F 4.853872 4.996087 -9.1 -8.55

41a 4-Cl 5.136677 5.010193 -9.37 -8.82

42a 4-Br 5.026872 4.967217 -10.35 -9.24

43a 4-I 4.958607 5.021639 -10.57 -9.57

44a 4-CN 4.721246 4.629007 -9.49 -8.61

45a H 4.721246 4.910881 -9.05 -8.46

SFOM-0004 (46a) 2-Me 5.21467 5.192087 -9.19 -8.85

SFOM-0005 (47a) 3-Me 5.142668 5.292942 -10.17 -9.01

SFOM-0006 (48a) 4-Me 4.721246 5.034783 -10.6 -8.94

SFOM-0007 (49a) 4-OMe 4.638272 4.823279 -9.07 -8.38

SFOM-0008 (50a) 4-N(Me)2 4.236572 4.317371 -9.55 -8.9

SFOM-0010 (51a) 4-OH 5.886057 5.088921 -9.17 -8.79

SFOM-0016 (52a) 2-Et 5.387216 5.366410 -10.28 -8.37

SFOM-0017 (53a) 2-Prop 5.677781 5.690676 -9.17 -9.11

SFOM-0046 (54a) - 5.468521 5.274308 -8.73 -8.77
1docking binding energy.
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multiple linear regression with stepwise variable 
selection (MLR), were used. These known proce-
dures are well explained in our previous QSAR 
studies (16, 17).
 To develop QSAR models, stepwise selec-
tion and elimination of variables was done by SPSS  
software (version 21; SPSS Inc., IBM, Chicago, 
IL, USA). To check the predictability, validity and 
robustness of the models, leave-one-out cross-val-
idation procedure using MATLAB 2015 software 
(version 8.5; Math work Inc., Natick, MA, USA) 
was obtaineddone. 
 FA-MLR was also conducted on the da-
taset. To reduce the number of variables and to 
detect structure in the relations between them, fac-
tor analysis (FA) was performed. Also, to identify 
the important predictor variables and to avoid co-
linearity among them, this data-processing step 
was used (18).  Along with FA-MLR, PCRA, was 
also applied for database. Among X variables, co-
linearities as a distributing factor are not included 
in PCRA and also the number of variables was not 
more than the number of observations (19). Factor 
scores obtained from FA, are playedplay the role 
of predictor variables. All descriptors in PCRA are 
important; and detecting the relevant descriptors is 
the end of factor analysis (17).
 The PLS regression method was applied 
to the NIPALS-based algorithm and existed in 
the chemometrics toolbox of MATLAB software. 
Also, to obtain the desirable number of factors, 
according to Haaland and Thomas F-ratio crite-
rion (20, 21), leave-one-out cross-validation pro-
cedure was applied. For PLS and GA modeling,  
MATLAB PLS toolbox was applied. All  
calculations were run on a core i7 personal com-
puter (CPU at 8 MB) with Windows 10 operating 
system.

2.4. Variable importance in the projection (VIP)
 To investigate the relative importance of 
the variable in the final model in GA-PLS method, 
variable important in objection (VIP) was applied 
(22). The importance of variables in PLS meth-
od are represented by VIP values. According to  
Erikson et al, it is possible for X-variables (predic-
tor variables) to be categorized in terms of their 
relevance in explaining y (predicted variable);. 

biological activity details of these compounds. The 
anti-proliferative activity against MCF7 cell line, 
as IC50 values, were used for the QSAR modeling 
studies. 

2.2. Molecular descriptors
 Using ChemBioDraw 12.0 software, two 
dimensional structures of the ligands were pro-
duced. Each ligand was optimized with different 
minimization methods including molecular me-
chanics (MM+) and quantum based semi-empiri-
cal method (AM1) by means of an in house TCL 
script (10-12) using Hyperchem. To calculate a 
large number of molecular descriptors, Hyper-
chem, Gaussian 98 (13) and Dragon packages (14) 
were applied. Also, to calculate chemical param-
eters such as  molecular volume (V), molecular 
surface area (SA), hydrophobicity (LogP), hy-
dration energy (HE) and molecular polarizabil-
ity (MP), Hyperchem software (Version 8, Hy-
percube Inc., Gainesville, FL, USA) was used. 
Similarly, Gaussian 98 software was applied to 
calculate the most positive and the negative net 
atomic charges, highest occupied molecular orbital 
(HOMO) and lowest unoccupied molecular orbital 
(LUMO) energies, the average absolute atomic 
charge and molecular dipole moment. Accord-
ing to the equations developed by Thanilaivelan 
et al, quantum chemical indices including hard-
ness (η=0.5(HOMO+LUMO)); softness (S=1⁄η),  
electrophilicity (ω=χ2⁄2η) and electronegativity 
(χ=-0.5) (HOMO-LUMO) were calculated (15). 
Different topological, geometrical, charge, em-
pirical and constitutional descriptors for each mol-
ecule and also 2D autocorrelations, aromaticity 
indices, atom-centered fragments and functional 
groups were calculated by Dragon.

2.3. Model development
 In a data matrix with the number of  
molecules and descriptors as the number of rows 
and columns respectively, the calculated descrip-
tors were illustrated. For producing QSAR equa-
tions, four different regression methods such as 
factor analysis as the data processing step for  
variable selection (FA-MLR), genetic algorithm-
partial least squares (GA-PLS), principal com-
ponent regression analysis (PCRA) and simple 

86



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

QSAR and docking on N-phenyl ureidobenzenesulfonates 

then, VIP>1.0 and 0.8<VIP<1.0  are highly and 
moderately influential and VIP<0.8 is less influ-
ential (23). This process were was done using  
XLSTAT 2017 software (24). 

2.5. Model validation
 To validate the regression equation, statis-
tical parameters including correlation coefficient 
(R2), root mean square error of cross-validation 
(RMScv), leave-one-out cross-validation correla-
tion coefficient (Q2), and variance ratio (F) with 
certain degrees of freedom were applied. 20% of 
the molecules were selected as test set (prediction 
set) molecules to test the developed model perfor-
mance. The predictive value of a QSAR model that 
has not been taken into account during the process 
of developing the model should be tested on an ex-
ternal set of data. 

2.6. Applicability domain
 Precise prediction ability of QSAR model 
for new compounds has been made it a widely 
used model (10, 17). It should be noted that no 
matter how significant and validated a QSAR may 
be, it cannot be expected to predict the modeled 
property for the entire space of chemicals reliably. 
Hence, the domain of application of QSAR before 
it is put into use for screening chemicals, must be 
defined and predictions should be considered reli-
able for only those chemicals that fall in this do-
main. The applicability domain is appraised by the 
leverage values for each compound of our dataset. 
A Williams plot (the plot of standardized residuals 
versus leverage values (h)) can then be used for an 
immediate and simple graphical detection of both 
the response outliers (Y outliers) and structurally 
influential chemicals (X outliers) in our model. 
The applicability domain for the graph is defined 
in a squared area within ±x (standard deviations) 
and leverage threshold h*.
 The certain features of the numerical val-
ue of leverage include 1) being greater than zero 
and 2) the lower the value, the higher is the confi-
dence in the prediction. Value of 1 equals to very 
poor prediction and value of zero equals to perfect 
prediction that will not be reached. The other fac-
tor to analysis the results is warning leverage (h*). 
The threshold h* is centered on 3(k+1) ⁄n, with 

k=the number of model parameter and n=number 
of training set (calibration set) compounds while 
x=2 or 3. Prediction of high leverage value (h>h*) 
compounds may not be reliable. If a leverage is 
higher than warning leverage h*, it means the pre-
dicted response is the consequence of substantial 
extrapolation of the model;. So, it is unreliable. 
In other another perspective, if being lower the  
compound leverage value is lower than the thresh-
old one, the means possibility of agreement be-
tween the values observed and predicted for 
compounds is as high as for the calibration set of 
compounds (25, 26).

2.7. Docking procedure
 Molecular docking werewas carried out 
using an in house batch script (DOCKFACE)  
(17, 27) of AutoDock 4.2, each ligand was sub-
jected to MM+ and AM1 minimization methods 
using Hyperchem 8 package. With Gasteiger-Mar-
sili procedure implanted in the AutoDock Tools 
program (28), the partial charges of atoms were 
calculated. Having non-polar hydrogens of com-
pounds merged and the rotatable bonds assigned, 
the output structures were changed to PDBQT us-
ing MGLtools 1.5.6 (29).
 The three dimensional crystal struc-
ture of DNA (PDB ID:1BNA) and Tubulin  
(PDB ID:3UT5) were retrieved from protein 
data bank (http://www.rcsb.org/pdb/home/home.
do). All water molecules were removed, missing 
hydrogens were added and after determining the 
Kollman united atom charges, non-polar hydro-
gens were merged into their corresponding car-
bons using AutoDock Tools (28). As the final part 
of this process, desolvation parameters were as-
signed to each protein atom. Among the three dif-
ferent search algorithms performed by AutoDock 
4.2 the commonly used Lamarckian Genetic Algo-
rithm (LGA) was applied (30-32). Subsequently, 
the enzyme and DNA were converted to PDBQT 
using MGLTOOLS 1.5.6.
 A maximum number of 2,500,000 energy 
evaluations, 150 population size, 27000 maxi-
mum generations, 100 run, a gene mutation rate 
of 0.02 and a crossover rate of 0.8 were used for  
Lamarckian GA. The grid maps of the receptors 
were calculated using AutoGrid tools of AutoDock 
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4.2. The size of grid includes both the active site 
and considerable proteins of the encircling surface. 
A grid box of 65×60×108 and 55×55×55 points in 
x, y and z directions was centered on the center of 
the ligand in the complex with a spacing of 0.375 
Å for 1BNA and 3UT5, respectively. Number of 
points in x, y and z was 14.719, 20.979 and 8.824 
and for 3UT5 was -19.934, 131.986 and 116.717 
respectively. Using AutoDock Tools the grid and 
docking parameter files, gpf and dpf, was pro-
duced. With a root mean square deviation (RMSD) 
tolerance of 2Å, cluster analysis was done on the 
docked results. Co-crystal ligand within pdb file 
of Tubulin (3UT5) was observed by a viewer and 
treated as other ligands. All the docking protocols 
were done on validated structures with RMSD val-
ues below 2 Å.
 According to docking results, ligand-re-
ceptor interactions were detected using AutoDock 
tools program (ADT, Version 1.5.6), VMD  
software (33) and PyMOL molecular graphics pro-
gram (34).

3. Results and Discussion
 In this paper, to calculate structural param-
eters affecting anti-proliferative activity against 
MCF7 cell line of PUB-SOs derivatives, a detailed 
QSAR study has been conducted. Four well known 
QSAR methods such as stepwise MLR, FA-MLR, 
PCRA, and GA-PLS were applied for modeling 
the relationship between the biological activity 
and molecular descriptors, in these compounds.

3.1. MLR modeling
 To model MLR, different stepwise  
selection-based MLR analyses were run using pool 
of all calculated descriptors. Table 2 shows the 
summarized results of QSAR models. Correlation 
coefficient (r2) matrix for the descriptors used in 
different MLR equations is shown in Table 3. Per-
formance of MLR equations is impaired by collin-
ear descriptors and prediction ability is decreased 
by such models. Collinear descriptors degrade the 
performance of MLR equations and such models 
have lowered prediction ability. The correlation 

Table 2. The results of different QSAR models with different types of dependent variables.
Model Eq.no. MLR Equation n1 R2c Q2 Rmscv Cvcv F R2p
MLR 1 pIC50=8.889 ATS5p (±0.831)-39.686 MSD 

(±5.817)-21.630 PW3 (±4.864)-0.463 Soft-
ness (±0.171)-11.341 MATS6m(±2.379)  
+4.463 MATS5m(±2.458) +1.265 IC2 

(±0.327)-0.438 HOMA (±0.179)-0.752 IC3 
(±0.362)+21.591(±3.722)

43 0.94 0.80 0.14 2.61 54.0 0.87

FA-
MLR

2 pIC50=0.869 X4v (±0.133)+ 3.294 GATS1e 
(±0.372)+8.426 MATS1e (±1.343)+0.994 

MATS7p (±0.374)-8.153 ATS8v (±1.996)+0.007 
G(Cl..Cl)(±0.002)-87.173 X1A (±13.071)-12.021 
LP1 (±4.124)+ 0876 IC2 (±0.211)-1.819 MATS5e 
(±0.250)+77.747 PW5 (±10.037)+1.596 MATS6e 
(±0.310)+0.643 J3D (±0.272)-58.989 (±13.588)

43 0.95 0.79 0.24 4.25 52.6 0.86

PCRA 3 pIC50=0.244 FAC4 (±0.034)+0.204 FAC1 
(±0.034)+0.106 FAC15 (±0.034)+0.090 FAC13 
(±0.034)-0.089 FAC7 (±0.034) +0.075 FAC8 

(±0.034)+0.075 FAC3 (±0.034)+5.283 (±0.034)

43 0.72 0.64 0.27 5.03 17.2 0.61

GA-PLS 4 pIC50=1.081X5v (±0.201)-0.012 L/BW 
(±0.002)-2.270 MATS2e (±0.298)-9.671 

ATS7e(±1.316)+2.808 MATS5p (±0.420)-
0.007 piPC07(±0.001)-2.938 MATS5v 

(±0.631)+0.15 piPC05 (±0.004)+0.179 SEigZ 
(±0.059)+12.422(±1.281)

43 0.97 0.72 0.24 4.55 89.8 0.81

1Number of molecules of training set used to derive the QSAR models. R2: Regression Coefficient for training set (calibration 
set). Q2: Regression Coefficient for Leave One Out Cross Validation. RMScv: Root Mean Square Error of cross validation.  
R2p: Regression Coefficient for prediction set (test set).
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coefficient (r2) matrix for the descriptors used in 
MLR equation 1, shows that no significant correla-
tion exists between pairs of descriptors (Table 3).
 The statistical parameters calculated for 
an obtained QSAR model such as R2, correlation 
coefficient (R2p) of prediction set, F at specified 
degrees of freedom, Q2, Cvcv and RMScv, having 
been used to validate the goodness of fit of the re-
sulted QSAR equations, are represented in Table 2. 
The selected variables in table 2 demonstrate that 
Aromaticity (HOMA), topological (MSD, PW3, 
IC2, IC3), 2D autocorrelations (ATS5P, MATS5m, 
MATS6m), quantum (softness) descriptors affect 
the anti-proliferative activity of the studied com-
pounds. Table 2 shows that none of the suggested 
QSAR models were obtained by chance and the 
best set of calculated descriptors was selected by 
MLR (equation 1) because of its greatest statistical 
parameters. Therefore the best predictive results 
were observed. 

3.2. FA-MLR and PCRA
 Seven factors of loading for compounds 
(after VARIMAX rotation) were shown in Table 
4 upon their anti-proliferative activity (factor 1, 3, 
4, 7, 8, 13 and 15). As it was observed in table 4, 
about 49% of variances in the original data matrix 
could be explained by the selected seven factors. 
Table 4 shows that descriptors including MW, 
ATS3m, ATS4m, ATS7v, ATS8v, ATS3p, ATS4p, 
ATS5p, GATS7m, GATS1p, GATS4p, SEigZ, nx, 
X4v, X5v and I-099 are highest loading values for 
factor 1 and the highest loading values for factor 
3 are associated with Sv, Se, nSK, RBF, X4, X5, 
X0v, S2K, S3K, Lop, ICR, piPC08, MATS8m, 

MATS2v, MATS4e, MAXDP, nCp and Eph 
whereas MATS7p, MATS8p, GATS8v, GATS7e 
and GATS8p are the descriptors of high loading 
of factor 8. Table 4 revealed that, factors 1 and 3 
are moderately loaded with anti-proliferative ac-
tivity. It is interesting to note that, factor 1 is with 
highest loadings from constiutional (MW, nX), 2D 
autocorrelations (ATS3m, ATS4m, ATS7v, ATS8v, 
ATS3p, ATS4p, ATS5p, GATS7m, GATS1p, 
GATS4p), topological (SEigZ, X4v, X5v) and 
atom-centered fragments (I-099) while factor 3 is 
comprised of information about constiutional (Sv, 
Se, nSK, RBF), topological (X4, X5, X0v, MAX-
DP, S2K, S3K, Lop, ICR, piPC08), 2D autocor-
relations (MATS8m, MATS2v, MATS4e), func-
tional (nCp) and quantum (Eph) descriptors. Table 
2, equation 2 show the FA-MLR equation that has 
been made by highly loaded descriptors.

3.3. PCRA
 Equation 3 is obtained from factor scores 
as predictor parameters in multiple regression 
equation via forward selection method (PCRA). 
Unlike selected descriptors, factor scores include 
information from different descriptors, thus the 
risk for data missing is reduced. By using the prin-
ciple component method, seven (Table 4) factors 
scores were considered as independent parameters 
for developing QSAR equations. The variables 
used in Eq. 3 shows statistical quantities similar 
to those obtained by the FA-MLR method. But, it 
indicates partly higher calibration and lower cross-
validation statistics with respect to Eq.2. 
 In Table 4, Factor score 1 signifies the im-
portance of MW , ATS3m, ATS4m, ATS7v, ATS8v, 

Table 3. Correlation coefficient (R2) matrix for descriptors represented in multiple linear regression  
eqn 1.

ATS5p MSD PW3 softness MATS6m MATS5m IC2 IC3 HOMA
ATS5p 1 -0.130 -0.138 0.264 0.119 -0.105 0.071 0.179 -0.049
MSD 1 -0.282 -0.089 0.203 0.225 -0.114 0.167 -0.088
PW3 1 -0.110 0.088 -0.053 -0.045 -0.215 -0.007

softness 1 0.094 0.225 -0.231 -0.106 0.396
MATS6m 1 0.303 -0.202 -0.196 -0.062
MATS5m 1 -0.319 -0.327 000

IC2 1 0.290 0.030
IC3 1 0.078

HOMA 1
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Table 4. Factor loadings of some significant descriptors after VARIMAX rotation.
Descriptor F1 F3 F4 F7 F8                                 F13 F15 Communalities

HE 000 0.059 0.217 -0.570 -0.197 -0.171 -0.108 1.000
MW 0.873 0.359 -0.024 -0.019 0.009 -0.017 -0.007 1.000
Sv -0.151 0.886 -0.018 -0.138 -0.040 -0.045 0.988 1.000
Se -0.421 0.832 0.128 -0.015 -0.130 -0.023 -0.028 1.000

nSK -0.098 0.916 0.160 0.155 -0.059 -0.016 -0.029 1.000
RBF -0.299 0.810 0.108 0.055 0.005 0.114 0.005 1.000
nx 0.563 -0.206 -0.015 -0.258 0.028 -0.057 -0.036 1.000

MSD -0.033 -0.244 -0.897 -0.058 -0.048 0.055 -0.015 1.000
jhetz 0.311 -0.074 0.822 0.055 0.125 0.013 -0. 041 1.000
Jhetv 0.275 -0.067 0.664 0.007 -0.007 -0.315 -0.111 1.000
X4 -0.004 0.802 0.441 0.083 -0.081 0.026 -0.018 1.000
X5 -0.077 0.723 0.340 0.127 0.184 -0.096 0.054 1.000

X0v 0.480 0.828 0.111 -0.051 -0.086 -0.029 -0.026 1.000
X4v 0.652 0.512 0.327 -0.084 -0.129 -0.044 0.020 1.000
X5v 0.598 0.456 -0.375 -0.074 0.037 -0.112 0.004 1.000
S2K 0.118 0.853 0.015 0.036 0.010 0.050 -0.028 1.000
S3K 0.259 0.774 -0.349 -0.007 -0.092 0.140 0.054 1.000
PW3 -0.074 0.198 0.639 0.055 0.110 -0.246 -0.176 1.000
PW4 -0.024 0.273 0.815 -0.037 0.094 0.036 0.929 1.000
PW5 0.014 0.100 0.512 -0.055 0.486 -0.019 0.162 1.000
Lop -0.215 -0.630 -0.202 0.140 -0.053 0.062 0.058 1.000
ICR -0.135 0.629 -0.530 0.069 0.246 0.033 -0.213 1.000

IDDE -0.052 -0.145 -0.049 -0.150 -0.063 -0.091 0.591 1.000
IVDE 0.199 0.150 0.247 -0.506 -0.070 -0.062 0.068 1.000
vindex 0.131 -0.526 0.774 -0.073 0.126 -0.050 0.026 1.000
SIC3 0.327 -0.647 -0.105 0.068 0.065 0.015 0.088 1.000

SEigZ 0.823 0.001 0.005 -0.003 0.084 0.034 0.015 1.000
piPC08 -0.076 0.826 0.029 0.236 -0.122 -0.061 -0.090 1.000
ATS3m 0.874 -0.212 0.063 -0.022 0.102 0.024 -0.018 1.000
ATS4m 0.857 -0.143 0.161 -0.046 -0.016 0.073 0.057 1.000
ATS7v 0.784 -0.370 -0.166 0.048 0.043 -0.054 -0.021 1.000
ATS8v 0.794 0.027 -0.172 -0.023 -0.354 -0.040 -0.134 1.000
ATS3p 0. 890 -0.078 0.064 0.002 0.081 -0.069 0.0081 1.000
ATS4p 0.921 -0.113 0.169 -0.062 0.106 0.127 -0.120 1.000
ATS5p 0.836 -0.339 0.147 -0.030 -0.024 0.120 0.119 1.000

MATS5m 0.279 0.176 -0.538 -0.056 0.111 -0.100 -0.227 1.000
MATS8m 0.104 -0.571 0.227 0.084 0.570 0.045 -0.057 1.000
MATS2v 0.026 -0.644 0.287 -0.097 -0.050 -0.059 0.037 1.000
MATS1e -0.198 0.043 0.061 0.535 -0.129 -0.090 -0.036 1.000
MATS3e -0. 313 0.123 0.388 -0.061 -0.165 -0.508 -0.133 1.000
MATS4e -0.233 0.535 -0.207 -0.238 -0.100 -0.047 0.012 1.000
MATS7p 0.203 0.211 -0.067 -0.031 -0.739 0.004 -0.001 1.000
MATS8p 0.240 -0.165 -0.124 -0.024 0.859 0.005 0.008 1.000
GATS7m 0.542 0.037 -0.025 -0.099 0.039 -0.051 -0.103 1.000

90



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

QSAR and docking on N-phenyl ureidobenzenesulfonates 

Continued.
GATS8v -0.048 -0.181 0.373 0.021 -0.713 0.050 0.104 1.000
GATS3e 0.239 0.012 -0.315 -0.187 -0.197 0.688 0.053 1.000
GATS7e -0.270 0.188 0.317 -0.142 -0.545 -0.124 -0.157 1.000
GATS1p -0.857 0.277 0.147 0.012 -0.045 0.044 0.021 1.000
GATS4p -0.630 0.074 -0.044 0.032 0.177 0.109 0.178 1.000
GATS7p -0.333 0.220 0.035 0.002 0.570 -0.050 -0.050 1.000
GATS8p -0.058 0.324 -0.153 0.016 0.868 -0.018 -0.018 1.000
HOMA -0.026 -0.046 0.064 0.842 0.019 0.038 0.066 1.000

J3D -0.362 0.411 0.615 -0.045 -0.057 -0.105 -0.035 1.000
MAXDP -0.102 0.544 0.509 -0.086 -0.105 -0.110 0.107 1.000

ASP -0.128 0.025 -0.865 -0.032 0.144 0.072 0.000 1.000
L/Bw -0.049 0.076 -0.833 -0.029 0.202 -0.091 -0.213 1.000
nCp -0.408 0.619 0.267 -0.103 -0.115 -0.022 0.001 1.000

C-006 -0.016 0.382 -0.311 -0.067 -0.014 0.574 0.111 1.000
H-052 -0.185 0.192 0.068 -0.045 -0.037 0.698 -0.332 1.000
I-099 0.529 -0.126 -0.109 -0.003 0.025 -0.030 -0.086 1.000
Eph -0.120 0.610 -0.200 -0.189 0.212 0.072 -0.093 1.000

ATS3p, ATS4p, ATS5p, GATS7m, GATS1p, 
GATS4p, SEigZ, nx, X4v, X5v and I-099 descrip-
tors. Factor score 3 indicates the importance of Sv, 
Se, nSK, RBF, X4, X5, X0v, S2K, S3K, Lop, ICR, 
piPC08, MATS8m, MATS2v, MATS4e, MAXDP, 
nCp and Eph descriptors. Factor score 4 indicates 
the importance of MSD, jhetz, Jhetv, PW3, PW4, 
PW5, ICR, vindex, MATS5m, J3D, MAXDP and 
ASP. Factor score 7 indicates the importance of 
HE, IVDE and MATS1e descriptors. Factor score 
8 signifies the importance of MATS7p, MATS8p, 
GATS8v, GATS7e and GATS8p descriptors. Fac-
tor score 13 indicates the importance of GATS3e, 
C-006 and H-052 descriptors. Factor score 15 sig-
nifies the importance of IDDE descriptor.

3.4. GA-PLS
 The breakdown of data matrix for descrip-
tors in PLS analysis is into orthogonal matrices 
having an inner relation between dependent and 
independent variables. In PLS analysis in contrast 
to MLR analysis, the multicolinearity problem for 
descriptors is removed. Modeling in PLS is con-
sistent with noisy data better than MLR because 
a least number of latent variables are used in this 
type of analysis and also a lot of different GA-PLS 
runs have been performed via different initial sets 
of population. The statistical parameters calculat-

ed for this model are represented in Table 3.
 As it was shown in Table 3, a combination 
of 2D autocorrelations (ATS7e, MATS2e, MATS5p 
and MATS5v), topological (SEigZ, X5v, piPC05, 
piPC07) and geometrical (L/BW) descriptors have 
been selected by GA-PLS to account for the anti-
proliferative activity. In this table, Eq. 4 with high 
statistical quality parameters was obtained from 
the pool of calculated descriptors (i.e., R2=0.97 
and Q2=0.72) and, the predictive R2 value for the 
test set was found to be 0.81. 
 The optimum GA-PLS with best fitness 
includes 79 indices. The PLS estimate of coeffi-
cients for the descriptors are given in Figure 1. To 
calculate anti-proliferative activity of N-phenyl 
ureidobenzenesulfonates derivatives, a combined 
set of quantum, topological, Aromaticity and  
2D-autocorrelations descriptors has been used by 
GA-PLS. 
 VIP was calculated for each descriptor to 
determine the importance of the 79 selected GA-
PLS descriptors. Figure 2 show the VIP analysis 
of PLS equation. VIP shows that 23 descriptors 
with VIP>1.0 such as ATS5v, GATS1p, GATS5m, 
ATS6v, ATS1e, JhetZ, T(N..N), X5v, X5sol, X3sol, 
X1AV, X4, piPC06, piPC07, Vindex، HVcpx,  
SEigZ, L/BW, nBR , Br094, AMW, pol and MW are 
the most important indices in the QSAR equation 
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derived by PLS analysis. In addition, 0.8<VIP<1.0 
is moderately influential and VIP<0.8 is less influ-
ential.
 Finally it should be noted that the brief  
description of the descriptors which were inserted 
in the QSAR models are listed in Table 5.

3.5. In silico screening 
 Instead of expensive and time-consuming 
in vivo experiments, it is possible to apply in silico 
screening in initial steps of drug development be-
cause it is able to accelerate the speed of discovery, 
anticipate and explore new pharmaceutical com-

pounds. To explore and detect active compounds 
among molecular databases, a strong technique, 
virtual screening, may be used. This technique is 
used through deletion, insertion and substitution of 
different substitutes on the parent molecules and is 
able to investigate the influences of the structural 
modifications on biological activity (10, 17). 
 For the use of the model in screening new 
compounds, the domain application of QSAR 
model was determined. The applicability domain 
(AD) of QSAR model was applied to verify the 
prediction reliability, to recognize the troublesome 
compounds and to predict the compounds with ac-

Table 5. Definitions of molecular descriptors present in the models.
Descriptors Brief description

MATS5m Moran autocorrelation of lag 5 weighted by mass 2D autocorrelations
MATS6m Moran autocorrelation of lag 6 weighted by mass 2D autocorrelations
MATS1e Moran autocorrelation of lag 1 weighted by Sanderson electronegativity
MATS2e Moran autocorrelation of lag 2 weighted by Sanderson electronegativity
MATS5e Moran autocorrelation of lag 5 weighted by Sanderson electronegativity
MATS6e Moran autocorrelation of lag 5 weighted by Sanderson electronegativity
MATS5p Moran autocorrelation of lag 5 weighted by polarizability
MATS7p Moran autocorrelation of lag 7 weighted by polarizability
MATS5v Moran autocorrelation of lag 5 weighted by van der Waals volume
ATS5p Broto-Moreau autocorrelation of lag 5 (log function) weighted by polarizability
ATS7e Broto-Moreau autocorrelation of lag 7 (log function) weighted by Sanderson electronegativity
ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by van der Waals volume
GATS1e Geary autocorrelation of lag 1 weighted by Sanderson electronegativity
MSD mean square distance index (Balaban)
PW3 path/walk 3 - Randic shape index
PW5 path/walk 5 - Randic shape index
softness softness
IC2 Information Content index (neighborhood symmetry of 2-order)
IC3 Information Content index (neighborhood symmetry of 3-order)
HOMA Harmonic Oscillator Model of Aromaticity index
X2V valence connectivity index of order 2
X4V valence connectivity index of order 4
X5V valence connectivity index of order 5
X1A average connectivity index of order 1
G(Cl..Cl) sum of geometrical distances between Cl..Cl
LP1 lovasz-pclikan index (leading eigenvalue) eigenvalue-based index 
J3D 3D-Balaban index
L/BW length-to-breadth ratio by WHIM
piPCO5 molecular multiple path count of order 5
piPCO7 molecular multiple path count of order 7
SEigZ the eigenvalue sum from Z weighted distance matrix

92



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

QSAR and docking on N-phenyl ureidobenzenesulfonates 

 

H
E 

po
l 

A
M

W
 

Sv
 

Se
 

M
v 

M
e 

M
s 

nS
K

 
R

B
F 

nA
B

 nH
 

nN
 

nO
 

nB
R

 
nI

 
Jh

et
Z 

Jh
et

v 
X

3 
X

4 
X

2A
 

X
4A

 
X

5v
 

X
1A

v 
X

5A
v 

X
3s

ol
 

X
5s

ol
 

PW
3 

PJ
I2

 
ID

D
E 

H
V

cp
x 

V
in

de
x 

SI
C

3 
SE

ig
Z 

V
EA

2 
pi

PC
05

 
pi

PC
06

 
pi

PC
07

 
TN

..N
 TN

..F
 

A
TS

7m
 

A
TS

1v
 

A
TS

5v
 

A
TS

6v
 

A
TS

7v
 

A
TS

5e
 

A
TS

7e
 

M
A

TS
3m

 
M

A
TS

4m
 

M
A

TS
5m

 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

St
an

da
rd

iz
ed

 c
oe

ff
ic

ie
nt

s 

Variable (HE to MATS5m) 

pIC50MCF7 / Standardized coefficients 
(95% conf. interval) 

M
A

TS
8m

 
M

A
TS

1v
 

M
A

TS
2v

 
M

A
TS

4v
 

M
A

TS
5v

 
M

A
TS

6v
 

M
A

TS
2e

 
M

A
TS

4e
 

M
A

TS
5e

 
M

A
TS

7e
 

M
A

TS
1p

 
M

A
TS

5p
 

G
A

TS
5m

 
G

A
TS

7m
 

G
A

TS
6e

 
G

A
TS

7e
 

G
A

TS
1p

 
G

A
TS

3p
 

G
A

TS
8p

 
J3

D
 

PJ
I3

 
LB

w
 

nC
p 

F0
84

 
B

r0
94

 
D

ip
X

 
H

om
o 

Lu
m

o 
ha

rd
ne

ss
 

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

St
an

da
rd

iz
ed

 c
oe

ff
ic

ie
nt

s 

Variable (MATS8m to hardness) 

pIC50MCF7 / Standardized coefficients 
(95% conf. interval) 

Figure 1. Regression coefficients for the variables used in GA-PLS model.

ceptable activity that falls within this domain. We 
employed the important descriptors selected from 
MLR model (as the best studied model because of 
its greatest statistical parameters) to design new 
active compounds.
 According to analysis done on AD model 
in the Williams plot Of the MLR model (Figure 3) 
using the whole dataset, it was demonstrated that 
neither one of the compounds are an obvious out-
liner. As it was depicted in figure 3, none of the 
compounds have leverage (h) values greater than 
the threshold leverages (h*). The warning lever-
age (h*), was found to be 0.69. To the best of our 
knowledge, the compounds that had a standard-
ized residual more than three times of the standard 
deviation units were considered to be outliers. For 
both the calibration set and test set of targets, the 
presented model matches the high quality param-
eters with good fitting power and the capability of 

assessing external data. Moreover, almost all of 
the compounds were within the applicability do-
main of the proposed model and were evaluated 
accurately. While chemicals with a leverage value 
higher than h* were considered to be influential or 
high leverage chemicals (20, 21).
 To design new compounds with improved 
potential anti-proliferative activity against MCF7 
cell line, in the studied QSAR model, the in sili-
co screening should be used. Then, the in silico 
screening was applied by substituting diverse 
groups in different places. The results of this in-
vestigation are summarized in Table 6. As it was 
shown in Table 6, 45 novel compounds were de-
signed and their predicted anti-proliferative activi-
ties based on MLR equation, as well as their dock-
ing binding energies on DNA and tubulin were 
obtained. Leverage values show that all of the 
designed compounds were within the applicability 
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Figure 2. Variable importance in the projection (VIP) for the variables used in GA-PLS model.

domain. Among these molecules, 18 compounds 
such as 3c, 12c, 17-20c, 26c, 34c, 35c and 38-45c 
showed the best anti-proliferative activity. These 
compounds have good potential  to be used as an-
ticancer agents. 
 In figure 4, the data for predicted activi-
ties are plotted against experimental ones for the 
cross-validated prediction results to be taken into 
account . As it was mentioned above, the least 
scattering of data was obtained from MLR model. 
High regression ratio (R2 = 0.83) in this plot shows 
good agreement between the experimental activity 
and cross-validated predicted values of activity.

3.6. Docking Studies
 In the present study, molecular docking 
simulations were performed on 54 compounds 
of dataset as well as 45 designed compounds, 
to elucidate their interactions and to gain some  

 

Figure 3. Williams plot for the calibration set and external prediction set.

insight into their molecular binding mode with 
DNA and tubulin. The results obtained from molec-
ular docking containing the estimated free binding  
energy values (ΔGbind) for the best position of the 
docked compounds expressed in kcalmol-1, which 
are summarized in Table 1 and Table 6, along with 
the corresponding favorable interactions with 
the key amino acid residues at the active site of  
tubulin and key base pairs in DNA, are depicted in 
figures 5-8.
 Table 1 shows that, the ΔGbind values 
of the best docked poses of these compounds are 
within the range of -7.04 to -10.68 Kcal.mol-1 

for DNA binding and -7.46 to -10.16 Kcal.mol-1 
for tubulin. The best docking binding energies in 
binding to DNA is belong to the compound 37a, 
whereas the compound 31a shows great docking 
binding energies to tubulin compared to the oth-
ers. As it was shown in Table 6, the best docked 
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poses of designed compounds are within the range 
of -7.72 to -10.62 Kcal.mol-1 for DNA and -7.33 
to -9.84 Kcal.mol-1 for tubulin. Here, compound 
27c shows great docking binding energies to both 
tubulin and DNA compared to the others.
 Types of the interaction of these com-
pounds to their targets were also investigated. As 
indicated in figure 5A, the NH group of ureid moi-
ety of compound 7a is involved in hydrogen bond 
interaction with residue LysB254 in the active 
site of tubulin. The carbonyl group of urea inter-
acts via acceptor hydrogen bonds with GlnB247 
and AlaA181. A hydrogen bond interaction of the 
oxygen of the sulfonate group with GlnB247 and 

 

Figure 4. Plots of cross-validated predicted values of activity by MLR model against the experimental 
values. 

AlaA181 amino acids also existed. The docked 
model suggests that the most energetically favor-
able conformation of the docked pose of 7a inter-
acts with the base pairs in minor groove of 1BNA 
(figure 5B). It interacts via the NH group of the 
ureid moiety and the phenyl ring attached to the 
ureid moiety interacts with G10, the oxygen of the 
sulfonate group with G12 and the phenyl ring at-
tached to the sulfonate moiety with C3 base pairs 
in the minor groove of DNA.
 Types of interactions of compound 18a 
with both targets are depicted in figure 6. One of 
the NH groups of the ureid moiety of this com-
pound is involved in hydrogen bond interaction 

 

Figure 5. A) The structure of 7a surrounded by the key residues in the active site of tubulin. B) Molecular 
docking simulation studies of the interaction between 7a and 1BNA.
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with residue SerA178 and the other NH group 
interacts with residue ThrA179 in the active site 
of tubulin. The carbonyl group of urea interacts 
via acceptor hydrogen bonds with AsnA101. The 
oxygen of sulfonate group and the methoxy group 
on the phenyl ring are involved in hydrogen bond 
interactions with residues LeuB255 and ValB238, 
respectively (figure 6A). This compound interacts 
with the base pairs in the minor groove of 1BNA 
(figure 6B). It interacts via one of the NH groups 

 

Figure 6. A) The structure of 18a surrounded by the key residues in the active site of tubulin. B) Molecular 
docking simulation studies of the interaction between 18a and 1BNA.

 

Figure 7. A) The structure of 38c surrounded by the key residues in the active site of tubulin.  
B) The structure of 38c in DNA minor groove.

of the ureid moiety with G10 and the other NH 
groups with G9 base pairs. The phenyl ring at-
tached to the sulfonate group and the oxygen of the 
sulfonate group interact with G12 and C11 base 
pairs in minor groove of DNA. 
 The interaction of the designed com-
pounds based on in silico screening with both tar-
gets were also determined.
 As indicated in figure 7A, the carbonyl 
group of the urea moiety of compound 38c inter-
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Table 6. Structural modification of studied compounds and their predicted activities and docking binding 

energies for tubulin inhibitory and DNA binding based on MLR equation.
H
N

H
N

Cl
O R1

1c-4c

H
N

H
N

Cl
O

S
O

O

O
R1

5c-20c

S
O

O

O
R1

21c-27c

S
O

O

O
R1

R2N
H

N
H

Cl
O

28c-32c

Name R1 R2
QSAR Docking

pIC50 pred leverage ∆E (kcal/mol) DNA ∆E (kcal/mol) Tu-
bulin

1c S
O O

O - 4.13218 0.104278 -9.58 -8.96

2c
H
N

S
O O

O
- 4.9922779 0.1174002 -10.47 -8.73

3c S
H
N

S
O O

OO - 5.5665589 0.3069526 -9.33 -9.4

4c P
H
N

O
O

OH
- 4.9590493 0.1921305 -8.84 -7.41

5c
N

- 5.2363122 0.2563010 -8.58 -8.44

6c
N

- 5.0913227 0.3599163 -8.88 -8.46

7c N - 4.9712558 0.5123768 -8.92 -8.14

8c
N

N
- 5.2651320 0.5392542 -8.56 -8.2

9c
NN

- 5.0426637 0.4657614 -8.95 -8.38

10c N
N

- 5.1343357 0.5823411 -8.31 -7.95

11c
N

OH - 5.2468897 0.3428497 -8.77 -8.62

12c
S

- 5.5287544 0.3922224 -8.77 -8.43

13c
N

S
- 5.7314762 0.6115747 -8.71 -8.3

14c
N

H
N - 5.0422809 0.4137238 -8.11 -7.67

15c  NO

OH
- 4.8795738 0.5603296 -9.55 -8.06
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Continued.

16c
N N

H
N - 4.6522294 0.5012231 -8.43 -7.61

17c NH - 5.6518219 0.2244990 -9.79 -9.45

18c
N
NH - 5.6522115 0.1923932 -10.52 -9.34

19c OH

F

F

- 5.5255279 0.3501535 -8.56 -8.28

20c
F

F

OH - 5.7150829 0.3098086 -9.39 -8.28

21c O
H
N

Cl
O

R1 - 5.1411216 0.4650149 -8.14 -8.83

22c
H
NO

Cl
O

R1 - 5.0913299 0.3380399 -8.52 -8.36

23c
O

Cl
O

R1 - 5.0992968 0.3408480 -8.09 -8.48

24c Cl
O

R1 - 4.9823906 0.2774701 -8.37 -9.36

25c
H
N

S
H
N

Cl
O

R1
O

- 5.1827703 0.3006536 -10.41 -9.22

26c
H
N

H
N

Cl R1
CF3

- 5.84488271 0.3309945 -10.09 -9.48

27c R1
H
NN

N
NH

Me
- 5.3610461 0.3291805 -10.62 -9.84

28c
N

N
4.9494058 0.4360185 -8.38 -7.86

29c
N

5.0980903 0.3304486 -8.49 -8.32

30c
N N

4.8277382 0.5560025 -9.33 -8.07

31c
N

N

N

N
4.8873655 0.4892056 -7.72 -7.51

32c
N

N
N

N 5.0397236 0.6520727 -8.24 -7.71

33c N
N

N
N 5.0388827 0.6354044 -8.72 -8.18

34c
N

S 5.7113154 0.5350038 -8.54 -8.13

35c
N

N

S 5.8864446 0.6815654 -8.34 -7.96

36c
N H

N 5.3788083 0.3893294 -8.3 -7.67

37c
N

N
O

OH
5.0365843 0.6528003 -8.44 -8.53

38c
S N 6.4691508 0.5279159 -8.33 -8.15
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Continued.

39c
S

6.3150507 0.4960081 -8.51 -8.71

40c
S

N
N 6.3813354 0.6069968 -9.16 -8.29

41c
S H

N 6.3260508 0.5245212 -8.47 -7.7

42c
S

N

H
N 6.1913096 0.6489881 -8.65 -7.35

43c
H
N

N

H
N 5.7160477 0.4960274 -8.25 -7.33

44c
H
N

S 5.9852362 0.4678657 -8.48 -7.87

45c
H
N

N

S 6.1021267 0.6130011 -9.11 -7.85

acts with residues Leu255 and Asp258 in the ac-
tive site of tubulin. There existed a hydrogen bond 
interaction between the oxygen of the sulfonate 
group with residue Cys241. Its thiophene ring via 
its sulfur group interacts with residue Asp251. The 
docked model suggests that the most energetically 
favorable conformation of the docked pose of this 
compound interacts with the base pairs in minor 
groove of DNA (figure 7B). It interacts via one 
of the NH groups of its ureid moiety with A5 and 
the other NH group through arene-hydrogen bond 
with A6 base pairs. One of the oxygen groups of 
sulfonate moiety interacts with C11 and the other 
with A5 base pairs. The sulfur group of thiophene 
ring interacts with C9 and G10 base pairs in the 
minor groove of 1BNA.
 As depicted in figure 8A, the NH group 
of ureid moiety of compound 45c is involved in 
hydrogen bond interaction with residue Gln247 
in the active site of tubulin. The carbonyl group 
of urea moiety of this compound interacts with 
residue lys254. There existed a hydrogen bond in-
teraction between the oxygen of sulfonate group 
with residues Leu255 and Met259. The pyrole 
ring of this compound via its nitrogen group inter-
acts with residue Asp258. On the other hand, the 
docked pose of this compound interacts with the 
base pairs in minor groove of DNA (figure 8B). It 
interacts via the NH group of its ureid moiety with 
A5, the carbonyl group of urea moiety with G2, 

one of the oxygen groups of the sulfonate moiety 
with G10 and the other with A6 base pairs. The ni-
trogen group of pyrole ring interacts with C11 and 
the sulfur group of thiazole ring interacts with A5 
and T8 base pairs in the minor groove of DNA.
 The results obtained from this docking 
study indicate that the important amino acids inside 
the active site cavity that are in charge of essential 
interactions with tubulin are Ala30, Lys B254, Asn 
B258, Met B259, Asn A101, Glu A183, Thr A179, 
Leu B255, Ser A178 and Gln B247. And the most 
important base pairs inside the minor groove of 
DNA being responsible for essential intercalations 
with DNA are G2, G4, G10, G12, A5, A6, C9 and 
C11 base pairs. 
 The application of relative operating char-
acteristic curve (ROC) as a helpful metric tool to 
weigh the validity of docking procedures was first 
reported by Triballeau et al in computational me-
dicinal chemistry (35). Nowadays, it was widely 
used as a validating procedure (36). First of all, 
about 106 DNA intercalator and 74 tubulin in-
hibitors were retrieved from ChEMBL database as 
SMILES format (37-39). The structures based on 
their experimental activities are categorized into 
two subsets of active ligands and inactive decoys. 
26 ligands and 80 decoys for DNA and 20 ligands 
and 54 decoys for tubulin were generated. Sub-
sequently, through a shell script using openbabel 
2.3.2, the primary 3D generation of the structures 

99



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

Azar Mostoufi et al.

 

Figure 8. A) The structure of 45c surrounded by the key residues in the active site of tubulin. B) Molecular 
docking simulation studies of the interaction between 45c and 1BNA.

as mol2 format was provided (40). For all struc-
tures the ionization states at PH=7 were also calcu-
lated. Using batch scripting in windows operating 
system, the shell script was obtained. This screen-
ing method should be able to discriminate between 
active ligands and inactive decoys. ROC value is 
the area under the curve (AUC) for the plot of the 
true positive rate (TPR or sensitivity) against the 
false positive rate (FPR or 1- specificity) at vari-
ous threshold settings. The ROC curve is thus the 
sensitivity as a function of 1- specificity. The AUC 
for ROC is calculated by trapezoidal integration 

method as implemented in our in house ROC ap-
plication (36). The more ROCAUC value means 
that the docking protocol is more able to discrimi-
nate between ligands and decoys. As it was shown 
in figure 9, the AUC of 0.776 for DNA and 0.812 
for tubulin shows that our applied docking proto-
col was a validated protocol.
 On the other hand, to evaluate the effi-
ciency and quality of docking protocol with an-
other tool, Enrichment Factor (EFmax) was used. 
Its calculations were based on the Li et al. work 
(41). EFmax factor in comparison to ROC curves, 

 

Figure 9. A) ROC and EF diagrams for docking with DNA B) ROC and EF diagrams for docking  
with tubulin.
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is highly dependent on the number of actives in a 
data set (35). It means that early enrichment can be 
easily obtained if the number of active ligands is 
increasing in a dataset. Hence, the ROC should be 
considered most importantly.

4. Conclusion
 Here, using a series of chemometric meth-
ods such as MLR, GA-PLS, FA-MLR and PCRA, 
quantitative relationships between molecular 
structure and anti-proliferative activity against 
MCF7 cell line for a set of N-phenyl ureidoben-
zenesulfonates (PUB-SOs) derivatives were ob-
tained. Via different criteria such as cross-vali-
dation, validation through Y-randomization and 
root mean square error of cross validation (RM-
SECV), the reliability, accuracy and predictability 
of the proposed models were assessed. The role of 
charge, geometrical, topological, 2D autocorrela-
tions and quantum descriptors on anti-proliferative 
activity were acquired. A comparison between the 
different statistical methods employed, indicated 
that MLR represented superior results. According 

to the developed QSAR model, in silico screening 
was applied and new compounds such as 3c, 12c, 
17-20c, 26c, 34c, 35c and 38-45c with potential 
anti-proliferative activity were suggested for syn-
thesis. Molecular docking simulations were also 
performed on these compounds to elucidate their 
interactions and to gain some insight into their 
molecular binding mode with DNA and tubulin as 
their targets.

Acknowledgements
 The authors would like to thank the re-
search deputy of Ahvaz Jundishapur University of 
medical sciences who supported this work. Col-
laboration of the medicinal chemistry department, 
faculty of pharmacy, Ahvaz Jundishapur Univer-
sity of Medical Sciences, in providing the required 
facilities for this work is greatly acknowledged. 
This paper is a part of thesis by Fariba Aliyan.

Conflict of Interest
 None declared.

.................................................................................................................................
5. References
1. Gagné-Boulet M, Moussa H, Lacroix J, 
Côté M-F, Masson J-Y, Fortin S. Synthesis and 
biological evaluation of novel N-phenyl ureido-
benzenesulfonate derivatives as potential antican-
cer agents. Part 2. Modulation of the ring B. Eur J 
Med Chem. 2015;103:563-73.
2. Hoeijmakers JH. DNA damage, aging, 
and cancer. N Engl J Med. 2009;361:1475-85.
3. Jackson SP, Bartek J. The DNA-damage 
response in human biology and disease. Nature. 
2009;461:1071-8. 
4. Biedermann KA, Sun J, Giaccia AJ, Tosto 
LM, Brown JM. scid mutation in mice confers hy-
persensitivity to ionizing radiation and a deficien-
cy in DNA double-strand break repair. Proc Natl 
Acad Sci U S A. 1991;88:1394-7.
5. Aplan PD. Causes of oncogenic  
chromosomal translocation. Trends Genet. 2006; 
22:46-55.
6. Negritto M. Repairing Double-Strand 
DNA Breaks. Nature Education. 2010;3:26
7. Turcotte V, Fortin Sb, Vevey F, Coulombe 
Y, Lacroix J, Côté M-F, et al. Synthesis, biological 
evaluation, and structure-activity relationships of 

novel substituted N-phenyl ureidobenzenesulfo-
nate derivatives blocking cell cycle progression in 
S-phase and inducing DNA double-strand breaks. 
J Med Chem. 2012;55:6194-208.
8. Fortin S, Bouchon B, Chambon C, La-
croix J, Moreau E, Chezal J-M, et al. Character-
ization of the Covalent Binding of N-Phenyl-N′-
(2-chloroethyl) ureas to β-Tubulin: Importance of 
Glu198 in Microtubule Stability. J Pharmacol Exp 
Ther. 2011;336:460-7.
9. Fortin S, Wei L, Moreau E, Lacroix J, 
Côté M-F, Petitclerc É, et al. Design, synthesis,  
biological evaluation, and structure–activity rela-
tionships of substituted phenyl 4-(2-oxoimidazoli-
din-1-yl) benzenesulfonates as new tubulin inhibi-
tors mimicking combretastatin A-4. J Med Chem. 
2011 ;54:4559-80.
10. Fereidoonnezhad M, Faghih Z, Jokar E, 
Mojaddami A, Rezaei Z, Khoshneviszadeh M. 
QSAR, Molecular Docking and protein ligand in-
teraction fingerprint studies of N-phenyl dichloro-
acetamide derivatives as anticancer agents. Trends 
in Pharmaceutical Sciences. 2016;2:159-76.
11. Fereidoonnezhad M, Faghih Z, Mojad-
dami A, Sakhteman A, Rezaei Z. A Comparative 

101



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

Azar Mostoufi et al.

21. Khoshneviszadeh M, Edraki N, Miri R, 
Foroumadi A, Hemmateenejad B. QSAR Study of 
4-Aryl-4H-Chromenes as a New Series of Apopto-
sis Inducers Using Different Chemometric Tools. 
Chem Biol Drug Des. 2012;79:442-58.
22. Olah M, Bologa C, Oprea TI. An  
automated PLS search for biologically relevant 
QSAR descriptors. Comput Aided Mol Des. 
2004;18:437-49.
23. Bishop JM. The molecular genetics of 
cancer. Science. 1987;235:305-11.
24. Addinsoft S. XLstat 2012: Leading data 
analysis and statistical solution for microsoft ex-
cel. Addinsoft SRL. 2012.
25. Roy K, Kar S, Das RN. Chapter 7 - Vali-
dation of QSAR Models.  Understanding the Ba-
sics of QSAR for Applications in Pharmaceutical 
Sciences and Risk Assessment. Boston: Academic 
Press; 2015.p.231-89.
26. Weaver S, Gleeson MP. The importance 
of the domain of applicability in QSAR modeling.  
J Mol Graphics Modell. 2008;26:1315-26.
27. Mojaddami A, Sakhteman A, Fereidoon-
nezhad M, Faghih Z, Najdian A, Khabnadideh S, 
et al. Binding mode of triazole derivatives as aro-
matase inhibitors based on docking, protein ligand 
interaction fingerprinting, and molecular dynamics 
simulation studies. Res Pharm Sci. 2017;12:21-30.
28. Gasteiger J, Marsili M. Iterative par-
tial equalization of orbital electronegativity—
a rapid access to atomic charges. Tetrahedron. 
1980;36:3219-28.
29. Morris GM, Huey R, Olson AJ. Using 
AutoDock for Ligand-Receptor Docking. Current 
Protocols in Bioinformatics: John Wiley & Sons, 
Inc.; 2002.
30. Morris GM, Goodsell DS, Halliday RS, 
Huey R, Hart WE, Belew RK, et al. Automated 
docking using a Lamarckian genetic algorithm  
and an empirical binding free energy function.  
J Comput Chem. 1998;19:1639-62.
31. Hamedi A, Khoshnoud MJ, Tanideh N, 
Abbasi F, Fereidoonnezhad M, Mehrabani D.  
Reproductive toxicity of Cassia absus seeds 
in female rats: possible progesteronic proper-
ties of chaksine and b-sitosterol. Pharm Chem J. 
2015;49:268-74.
32. Faghih Z, Fereidoonnezhad M, Tabaei 
SMH, Rezaei Z, Zolghadr AR. The binding of 
small carbazole derivative (P7C3) to protofibrils 

Docking Studies of Dichloroacetate Analogues  
on Four Isozymes of Pyruvate Dehydrogenase 
Kinase in Humans. Indian J Pharm Edu Res. 
2016;50:S32-S8.
12. Fereidoonnezhad M, Faghih Z, Mojad-
dami A, Tabaei S, Rezaei Z. Novel Approach Syn-
thesis, Molecular Docking and Cytotoxic Activity 
Evaluation of N-phenyl-2, 2-dichloroacetamide 
Derivatives as Anticancer Agents. J Sci I R Iran 
2016;27:39-49.
13. Frisch MJ, Trucks GW, Schlegel HB,  
Scuseria GE, Robb MA, Cheeseman JR, et al. 
Gaussian 09. Wallingford, CT, USA: Gaussian, 
Inc.; 2009.
14. A. Mauri VC, M. Pavan, R. Todeschini: 
D,. RAGON Software: An Easy Approach to Mo-
lecular Descriptor Calculations. MATCH Commun 
Math Comput Chem. 2006;56:237-48.
15. Thanikaivelan P, Subramanian V, Raghava 
Rao J, Unni Nair B. Application of quantum chem-
ical descriptor in quantitative structure activity and 
structure property relationship. Chem Phys Lett. 
2000;323:59-70.
16. Khoshneviszadeh M, Faghih Z, Jokar E, 
Mojaddami A, Rezaei Z. QSAR, Molecular Dock-
ing and protein ligand interaction fingerprint stud-
ies of N-phenyl dichloroacetamide derivatives as 
anticancer agents. Trends in Pharmaceutical Sci-
ences. 2016;2(2).
17. Zare S, Fereidoonnezhad M, Afshar D, 
Ramezani Z. A comparative QSAR analysis and 
molecular docking studies of phenyl piperidine 
derivatives as potent dual NK 1 R antagonists/
serotonin transporter (SERT) inhibitors. Computa-
tional Biology and Chemistry. 2017;67:22-37.
18. Franke R, Gruska A, van de Waterbeemd 
H. Chemometrics Methods in molecular design. 
Methods and Principles in Medicinal Chemistry. 
1995;2:113-9.
19. Bhattacharya P, Roy K. QSAR of adenos-
ine A 3 receptor antagonist 1, 2, 4-triazolo [4, 3-a] 
quinoxalin-1-one derivatives using chemometric 
tools. Bioorg Med Chem Lett. 2005;15:3737-43.
20. Asadollahi T, Dadfarnia S, Shabani AMH, 
Ghasemi JB, Sarkhosh M. QSAR Models for 
CXCR2 Receptor Antagonists Based on the Ge-
netic Algorithm for Data Preprocessing Prior to 
Application of the PLS Linear Regression Method 
and Design of the New Compounds Using In Silico 
Virtual Screening. Molecules. 2011;16:1928-55.

102



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

QSAR and docking on N-phenyl ureidobenzenesulfonates 

of the Alzheimer’s disease and β-secretase: Mo-
lecular dynamics simulation studies. Chem Phys. 
2015;459:31-9.
33. Humphrey W, Dalke A, Schulten K. 
VMD: visual molecular dynamics. J M Graph. 
1996;14:33-8, 27-8.
34. DeLano WL. PyMOL. DeLano Scientific, 
San Carlos, CA. 2002;700.
35. Triballeau N, Acher F, Brabet I, Pin 
JP, Bertrand HO. Virtual screening workflow  
development guided by the “receiver operat-
ing characteristic” curve approach. Application 
to high-throughput docking on metabotropic 
glutamate receptor subtype 4. J Med Chem. 
2005;48:2534-47.
36. Rezaei Z, Fereidoonnezhad M, Faghih Z, 
Sadeghpur H, Mojaddami A, Sakhteman A. Com-
parison of docking procedures and its efficiency 
for Betasecretase, Aromatase and Pyruvate dehy-
drogenase kinase inhibitors. Trends in Pharmaceu-
tical Sciences. 2017;3(1):31-42.

37. Gaulton A, Bellis LJ, Bento AP, Chambers 
J, Davies M, Hersey A, et al. ChEMBL: a large-
scale bioactivity database for drug discovery. Nu-
cleic Acids Res. 2012;40(Database issue):D1100-7.
38. Wassermann AM, Bajorath J. Binding-
DB and ChEMBL: online compound databases 
for drug discovery. Expert Opin Drug Discov. 
2011;6:683-7.
39. Willighagen EL, Waagmeester A, Spjuth 
O, Ansell P, Williams AJ, Tkachenko V, et al. The 
ChEMBL database as linked open data. J Chemin-
form. 2013;5:23.
40. O’Boyle NM, Banck M, James CA, Mor-
ley C, Vandermeersch T, Hutchison GR. Open 
Babel: An open chemical toolbox. J Cheminform. 
2011;3:33.
41. Li H, Zhang H, Zheng M, Luo J, Kang L, 
Liu X, et al. An effective docking strategy for vir-
tual screening based on multi-objective optimiza-
tion algorithm. BMC bioinformatics. 2009;10:58.

103



Trends in Pharmaceutical Sciences 2017: 3(2): 83-104.

Azar Mostoufi et al.

104


