Antiplasmodial activity of Anchomanes difformis aqueous leaf extract on Plasmodium berghei infected mice

Document Type : Original Article


1 Department of Biochemistry, Faculty of Science, Madonna University Nigeria

2 Department of Pharmacology and Toxicology, Faculty of Pharmacy, Niger Delta University, Nigeria


Challenges including treatment failure, cost, resistance, and adverse effects associated with antimalarial drugs have increased the use of medical plants as alternative treatment. Anchomanes difformis (A. difformis) is a multipurpose plant used traditionally for the treatment of a variety of ailments including malaria, but with a paucity of scientific evidence. This study assessed the antiplasmodial activity of A. difformis aqueous leaf extract (AEA) in Plasmodium berghei (P. berghei) infected mice. AEA (100, 200 and 400 mg/kg) was orally administered to P. berghei infected mice in the curative, suppressive and prophylactic groups. The untreated parasitized control (UPC) and the positive control were administered orally with normal saline (0.2mL) and chloroquine (CQ) (10mg/kg). After treatment, blood samples were analyzed for parasitamia level, hematological parameters and liver samples were evaluated for histology. Curative, suppressive and prophylactic studies showed that administered AEA decreased parasitamia levels and increased survival time in a dose-dependent fashion with significance at 200 mg/kg (p


1. Phillips RS. Current status of malaria and potential for control. Clin Microbiol Rev. 2001 Jan;14(1):208-26. doi: 10.1128/CMR.14.1.208-226.2001. PMID: 11148010; PMCID: PMC88970.
2. Greenwood B, Mutabingwa T. Malaria in 2002. Nature. 2002 Feb 7;415(6872):670-2. doi: 10.1038/415670a. PMID: 11832954.
3. Tabbabi A. Socio-economic Impact of Malaria in Africa. Acta Scie Microbiol. 2018;17: 2-34.
4. White NJ. Antimalarial drug resistance.
J Clin Invest. 2004;113(8):1084-1092. doi:10.1172/JCI21682
5. Taek MM, Prajogo B, Agil M. Ethnomedicinal Plants Used for the Treatment of Malaria in Malaka, West Timor . J Young Pharm. 2018; 10(2): 187-192
6. Agyare C, Dwobeng AS, Agyepong N, Boakye YD, Mensah KB, Ayande PG, Adarkwa-Yiadom M. Antimicrobial, Antioxidant, and Wound Healing Properties of Kigelia africana (Lam.) Beneth. and Strophanthus hispidus DC. Adv Pharmacol Sci. 2013;2013:692613. doi: 10.1155/2013/692613. Epub 2013 Apr 11. PMID: 23662099; PMCID: PMC3639673.
7. Plowman T. Folk uses of New World aroids. Econ Bot. 1969;23:97-122.
8. Tchiakpe L, Balansard G, Bernard P, Dalziel JM. The useful plants of west tropical Africa. Planta Med, 1979; 39: 257.
9. Oyetayo VO. Comparative Studies of the Phytochemical and Antimicrobial Properties of the Leaf, Stem and Tuber of Anchomanes difformis.
J Pharm Toxicol. 2007;2:407-10.
10. Dalziel JM (1937) The useful plants of West Tropical Africa. The Crown Agents for the Colonies, London. pp. 52-560.
11. Akah P, Njike HA. Some pharmacological effects of rhizome aqueous extract of Anchomanes difformis. Fitoterapia 61. 1990:368-70.
12. Harborne J B. Phytochemical Methods. Chapman and Hall Ltd., London; 1973; 49:180-188.
13. Trease G and Evans W C. Pharmacognosy. Bailliere Tindall, London, Ed. 2008; 11, 45-50.
14. Knight DJ, Mamalis P, Peters W. The antimalarial activity of N-benzyl-oxydihydrotriazines. III. The activity of 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-(2,4,5,-trichloropropyloxy)-1,3,5-triazine hydrobromide (BRL 51084) and hydrochloride (BRL 6231). Ann Trop Med Parasitol. 1982 Feb;76(1):1-7. PMID: 7044322.
15. Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983 Dec;54(4):275-87. doi: 10.1007/BF01234480. PMID: 6667118.
16. Ryley JF, Peters W. The antimalarial activity of some quinolone esters. Ann Trop Med Parasitol. 1970 Jun;64(2):209-22. doi: 10.1080/00034983.1970.11686683.
17. Peters, W. Rational methods in the search for antimalarial drugs. Trans R Soc Trop Med Hyg. 1967;61:400-10.
18. Mahady GB. Medicinal plants for the prevention and treatment of bacterial infections. Curr Pharm Des. 2005;11(19):2405-27. doi: 10.2174/1381612054367481. PMID: 16026296.
19. Ahmed H. A Anchomanes difformis: A Multipurpose Phytomedicine IOSR. J Pharm Biol Sci. 2018; 13; 2; 62-65
20. Bello OM, Jagaba SM, Bello OE. A wild edible vegetable Anchomanes difformis (Blume) Engl.: its ethnomedicinal, phytochemistry, nutritional importance and other uses. Eurasia J Biosci. 2019;13:1137-47.
21. Olanlokun JO, Babarinde CO and Olorunsogo O. O. Toxicity of Anchomanes difformis, An Antimalarial Herb in Murine Models. Eur Jour of Med Plants. 2017;20(3):1-13
22. Sullivan DJ Jr, Matile H, Ridley RG, Goldberg DE. A common mechanism for blockade of heme polymerization by antimalarial quinolines. J Biol Chem. 1998 Nov 20;273(47):31103-7. doi: 10.1074/jbc.273.47.31103. PMID: 9813011.
23. O'Neill PM, Barton VE, Ward SA. The molecular mechanism of action of artemisinin--the debate continues. Molecules. 2010 Mar 12;15(3):1705-21. doi: 10.3390/molecules15031705. PMID: 20336009; PMCID: PMC6257357.
24. Iribhogbe OI, Agbaje EO, Oreagba IA, Aina O, Ota AD. Oxidant versus Antioxidant Activity in Malaria: Role of Nutritional Therapy. J Med Sci. 2012;12:229-33.