A Tablet Matrix with Hibiscus rosa Sinensis Leave Mucilage for Effective Treatment of Rare Lymphangioleiomyomatosis Using Sirolimus

Document Type : Original Article

Authors

Department of Industrial Pharmacy, Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Ananthapuramu-515721 Andhra Pradesh, India.

10.30476/tips.2021.90567.1087

Abstract

Using a blend of herbal and synthetic polymers, the authors aim to extend the release of Sirolimus from the tablets. Sirolimus was used as a model drug, Hydroxy Propyl Methyl Cellulose was used as a synthetic polymer, and mucilage from Hibiscus rosa sinensis leaves was used as a natural polymer in this study. In addition to treating Lymphangioleiomyomatosis damage and suppressing body rejection toward transplanted organs, sirolimus is also an orphan drug. The Sirolimus matrix tablets are made with a combination of H. rosa sinensis leaf mucilage and Hydroxypropyl Methyl Cellulose. We assessed the flow properties of the blend and classified the designed tablets for official and non-official tests, including Sirolimus discharge. Sirolimus matrix tablets have passable pre- and post-formulation parameters with good Sirolimus content. A chemical interaction between Sirolimus and the polymers used in the study was not observed. Researchers also discovered that H. rosa sinensis leaf mucilage can be a good polymer in combination with other polymers for prolonged drug release.
Please cite this article as: Hindustan Abdul Ahad*1, Chinthaginjala Haranath1, Yarragunta Roja, Kandlapalli Swathi, Pandre shravya, Anam Rashi. A Tablet Matrix with Hibiscus Rosa Sinensis Leave Mucilage for Effective Treatment of Rare Lymphangioleiomyomatosis Using Sirolimus. Trends in Pharmaceutical Sciences. 2022;8(1):43-50.doi: 10.30476/TIPS.2021.90567.1087

Keywords


1. Wickerson L, Brooks D, Reid WD, Singer LG, Granton J, Mathur S. Exertional Oxygen Requirements During Exercise Training in Advanced Interstitial Lung Disease. J Cardiopulm Rehabil Prev. 2018 Nov;38(6):419-424. doi: 10.1097/HCR.0000000000000338. PMID: 29952810.
2. Trulock EP. Lung transplantation. Am J Respir Crit Care Med. 1997 Mar;155(3):789-818. doi: 10.1164/ajrccm.155.3.9117010. PMID: 9117010.
3. Arcasoy SM, Kotloff RM. Lung transplantation. N Engl J Med. 1999 Apr 8;340(14):1081-91. doi: 10.1056/NEJM199904083401406. PMID: 10194239.
4. Bezinover D, Saner F. Organ transplantation in the modern era. BMC Anesthesiol. 2019 Mar 4;19(1):32. doi: 10.1186/s12871-019-0704-z. PMID: 30832567; PMCID: PMC6399965.
5. Ahad HA, Rajesh V, Gupta M, Lasya D, Harish N, Khamartaz MJIJPR. Fabrication and in vitro evaluation of glimepiride hibiscus esculentus fruit mucilage sustained release matrix tablets. Int J Pharm Tech Res.2010,2(1):78-83.
6. Ahad HA, Kumar CS, Kumar K, CGS SJIJoPSR, Res. Designing and evaluation of Diclofenac sodium sustained release matrix tablets using Hibiscus Rosa-Sinensis leaves mucilage. Int J Pharm Sci Rev Res. 2010;1(2):29-31.
7. Debunne A, Vervaet C, Mangelings D, Remon JP. Compaction of enteric-coated pellets: influence of formulation and process parameters on tablet properties and in vivo evaluation. Eur J Pharm Sci. 2004 Jul;22(4):305-14. doi: 10.1016/j.ejps.2004.03.017. PMID: 15196587.
8. Ahad HA, Haranath C, Vikas SS, Varam NJ, Ksheerasagare T, Gorantla SPRJRJoP, et al. A Review on Enzyme Activated Drug Delivery System. Res J Pharm Technol. 2021;14(1):516-22. doi: 10.5958/0974-360X.2021.00094.9
9. Balss KM, Llanos G, Papandreou G, Maryanoff CA. Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy. J Biomed Mater Res A. 2008 Apr;85(1):258-70. doi: 10.1002/jbm.a.31535. PMID: 17876804.
10. Saifullah M, Yusof Y, Chin N, Aziz MJPt. Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technol. 2016;301:396-404. DOI10.1016/j.powtec.2016.06.035
11. Sun CCJPt. Setting the bar for powder flow properties in successful high speed tableting. Powder Technol. 2010;201(1):106-8. doi: 10.1208/s12249-020-01915-6
12. Merchant HA, Shoaib HM, Tazeen J, Yousuf RI. Once-daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: A technical note. AAPS PharmSciTech. 2006 Sep;7(3):E178-E183. doi: 10.1208/pt070378. Epub 2017 Mar 8. PMID: 28290013.
13. Hourcade JP, Williams SR, Miller EA, Huebner KE, Liang LJ. Evaluation of tablet apps to encourage social interaction in children with autism spectrum disorders. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '13). Association for Computing Machinery, New York, NY, USA.2013;3197–3206. doi: 10.1145/2470654.2466438
14. Bedair TM, Yu SJ, Im SG, Park BJ, Joung YK, Han DK. Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. J Colloid Interface Sci. 2015 Dec 15;460:189-99. doi: 10.1016/j.jcis.2015.08.051. Epub 2015 Aug 24. PMID: 26319336.
15. Islambulchilar Z, Ghanbarzadeh S, Emami S, Valizadeh H, Zakeri-Milani P. Development and validation of an HPLC method for the analysis of sirolimus in drug products. Adv Pharm Bull. 2012;2(2):135-9. doi: 10.5681/apb.2012.021. Epub 2012 May 20. PMID: 24312784; PMCID: PMC3845993.
16. Chen T, Liu L, Zhang L, Lu T, Matos RL, Jiang C, Lin Y, Yuan T, Ma Z, He H, Zhuang X, Li Q. Optimization of the supercritical fluidized bed process for sirolimus coating and drug release. Int J Pharm. 2020 Nov 15;589:119809. doi: 10.1016/j.ijpharm.2020.119809. Epub 2020 Sep 5. PMID: 32896606.
17. Patel PV, Parmar HH, Panchal SS. Improvement of Solubility and Dissolution Rate of Sirolimus by Solid Dispersions in Combination with Surface Adsorbent. Drug Del Lett. 2013 Apr 1;3(1):28-37. doi: 10.2174/2210304x11303010005.
18. Haranath C, Hindustan AA, Pushpalatha Gutty R, Kalpana K, Sai Priyanka M, Devika P. Nanosuspension as Promising and Potential Drug Delivery: A Review. Int J Pharma Bio Sci.
2021;11(1):59-66.
19. Geldart D, Abdullah EC, Hassanpour A, Nwoke LC, Wouters IJ. Characterization of powder flowability using measurement of angle of repose. China Particuology. 2006 Jul 1;4(3-4):104-7. DOI. 10.1016/s1672-2515(07)60247-4
20. Leturia M, Benali M, Lagarde S, Ronga I, Saleh K. Characterization of flow properties of cohesive powders: A comparative study of traditional and new testing methods. Powder Technol. 2014 Feb 1;253:406-23. doi: 10.1016/j.powtec.2013.11.045
21. Osei-Yeboah F, Sun CC. Validation and applications of an expedited tablet friability method. Int J Pharm. 2015 Apr 30;484(1-2):146-55. doi: 10.1016/j.ijpharm.2015.02.061