Evaluation of CTAB coated gold nanoparticles as a potential carrier for gene delivery

Document Type : Original Article


1 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Department of Optometry, Faculty of Rehabilitation, Iran University of Medical Sciences, Iran.

4 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

5 Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.


Gold nanoparticles (AuNPs) exhibit a variety of attractive physical, chemical, optical, thermal, and biological properties, making them potential candidates for non-toxic drug and gene delivery carriers. The surface modifications of AuNPs vastly enhance their circulation, minimize aggregation rates, and increase their targeting capability. In this investigation, cetyltrimethylammonium (CTAB) coated AuNPs were prepared and characterized for potential application in gene delivery. This surface modification can lead to the improvement of dispersibility and stability in aqueous solution, and surface charge density. In this study, CTAB coated AuNPs were complexed with plasmid DNA (pUMVC3-hIL-12) via electrostatic interaction and resulted in the formation of nano-sized CTAB-AuNP/plasmid DNA complexes with the size of 84.7±9.8 nm.  The zeta potential of these complexes was surface +4 mV at carrier: plasmid (C/P) ratio of 10. These complexes could condense the pDNA at C/P ratios of 8 and 10 and protect it against nuclease enzyme at C/P ratios of 4, 8, and 10. This study suggests that CTAB coated gold nanoparticles can be tested for potential applications in nucleic acid delivery. 
Keywords: Gene delivery, gold nanoparticles, cetyl trimethyl ammonium bromide, pUMVC3-hIL-12.
Please cite this article as: Sepideh Pouya, Maryam Kazemi, Setareh Pouya, Ali Dehshahri, Zahra Sobhani. Evaluation of CTAB coated gold nanoparticles as a potential carrier for gene delivery. Trends in Pharmaceutical Sciences. 2022;8(3):147-154. doi: 10.30476/TIPS.2022.95505.1146


1.    Putnam D. Polymers for gene delivery across length scales. Nat Mater. 2006 Jun;5(6):439-51. doi: 10.1038/nmat1645. PMID: 16738681.
2.    Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005 Jul;4(7):581-93. doi: 10.1038/nrd1775. PMID: 16052241.
3.    Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials. 2008 Aug-Sep;29(24-25):3477-96. doi: 10.1016/j.biomaterials.2008.04.036. Epub 2008 May 21. PMID: 18499247.
4.    Zhang P, Li B, Du J, Wang Y. Regulation the morphology of cationized gold nanoparticles for effective gene delivery. Colloids Surf B Biointerfaces. 2017 Sep 1;157:18-25. doi: 10.1016/j.colsurfb.2017.04.056. Epub 2017 Apr 28. PMID: 28558339.
5.    Gholipourmalekabadi M, Mobaraki M, Ghaffari M, Zarebkohan A, Omrani VF, Urbanska AM, Seifalian A. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. Curr Pharm Des. 2017;23(20):2918-2929. doi: 10.2174/1381612823666170419105413. PMID: 28425863.
6.    Ding Y, Jiang Z, Saha K, Kim CS, Kim ST, Landis RF, Rotello VM. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014 Jun;22(6):1075-1083. doi: 10.1038/mt.2014.30. Epub 2014 Mar 6. PMID: 24599278; PMCID: PMC4048892.
7.    Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011 Jan 5;149(1):65-71. doi: 10.1016/j.jconrel.2009.12.006. Epub 2009 Dec 11. PMID: 20004222.
8.    Yeo J, Lee D, Pang Y. Surface adsorption of hydroxyanthraquinones on CTAB-modified gold nanosurfaces. Spectrochim Acta A Mol Biomol Spectrosc. 2021 Apr 15;251:119408. doi: 10.1016/j.saa.2020.119408. Epub 2021 Jan 1. PMID: 33433377.
9.    Jia YP, Shi K, Liao JF, Peng JR, Hao Y, Qu Y, et al. Effects of cetyltrimethylammonium bromide on the toxicity of gold nanorods both in vitro and in vivo: molecular origin of cytotoxicity and inflammation. Small Methods. 2020;4(3):1900799.
10.    Fuller MA, Köper I. Biomedical applications of polyelectrolyte coated spherical gold nanoparticles. Nano Converg. 2019 Apr 24;6(1):11. doi: 10.1186/s40580-019-0183-4. PMID: 31016413; PMCID: PMC6478786.
11.    Yin F, Gu B, Lin Y, Panwar N, Tjin SC, Qu J, et al. Functionalized 2D nanomaterials for gene delivery applications. Coord Chem Rev. 2017;347:77-97.
12.    Dehshahri A, Khalvati B, Taheri Z, Safari F, Mohammadinejad R, Heydari A. Interleukin-12 Plasmid DNA Delivery by N-[(2-Hydroxy-3-trimethylammonium)propyl]chitosan-Based Nanoparticles. Polymers (Basel). 2022 May 27;14(11):2176. doi: 10.3390/polym14112176. PMID: 35683849; PMCID: PMC9182864.
13.    Dehshahri A, Sadeghpour H, Mohazzabieh E, Saatchi Avval S, Mohammadinejad R. Targeted double domain nanoplex based on galactosylated polyethylenimine enhanced the delivery of IL-12 plasmid. Biotechnol Prog. 2020 Sep;36(5):e3002. doi: 10.1002/btpr.3002. Epub 2020 Apr 22. PMID: 32281252.
14.    Dehshahri A, Sadeghpour H, Kazemi Oskuee R, Fadaei M, Sabahi Z, Alhashemi SH, et al. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers. J Nanopart Res. 2014;16(5):1-14.
15.    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014 Aug;15(8):541-55. doi: 10.1038/nrg3763. Epub 2014 Jul 15. PMID: 25022906.
16.    Alipour S, Shirazi HC, Kazemi M, Dehshahri A, Ahmadi F. Synthesis and cytotoxicity evaluation of doxorubicin-polyethyleneimine conjugate as a potential carrier for dual delivery of drug and gene. J Drug Deliv Sci Technol. 2021:102994.
17.    Dai Z, Wu C. How does DNA complex with polyethylenimine with different chain lengths and topologies in their aqueous solution mixtures? Macromolecules. 2012;45(10):4346-53.
18.    Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 1998 Oct;5(10):1425-33. doi: 10.1038/sj.gt.3300745. PMID: 9930349.
19.    Nouri F, Sadeghpour H, Heidari R, Dehshahri A. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene. Int J Nanomedicine. 2017 Aug 3;12:5557-5569. doi: 10.2147/IJN.S140734. PMID: 28831252; PMCID: PMC5548269.
20.    Alemzadeh E, Dehshahri A, Izadpanah K, Ahmadi F. Plant virus nanoparticles: Novel and robust nanocarriers for drug delivery and imaging. Colloids Surf B Biointerfaces. 2018 Jul 1;167:20-27. doi: 10.1016/j.colsurfb.2018.03.026. Epub 2018 Mar 26. PMID: 29625419.
21.    Nimesh S, Aggarwal A, Kumar P, Singh Y, Gupta KC, Chandra R. Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. Int J Pharm. 2007 Jun 7;337(1-2):265-74. doi: 10.1016/j.ijpharm.2006.12.032. Epub 2006 Dec 28. PMID: 17254724.
22.    Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010 Aug 3;145(3):182-95. doi: 10.1016/j.jconrel.2010.01.036. Epub 2010 Mar 10. PMID: 20226220; PMCID: PMC2902597.
23.    Cook SE, Park IK, Kim EM, Jeong HJ, Park TG, Choi YJ, Akaike T, Cho CS. Galactosylated polyethylenimine-graft-poly(vinyl pyrrolidone) as a hepatocyte-targeting gene carrier. J Control Release. 2005 Jun 20;105(1-2):151-63. doi: 10.1016/j.jconrel.2005.03.011. PMID: 15878633.
24.    Kumar SV, Ganesan S. Preparation and characterization of gold nanoparticles with different capping agents. Int J Green Nanotechnol Biomed. 2011;3(1):47-55.
25.    Porcaro F, Miao Y, Kota R, Haun JB, Polzonetti G, Battocchio C, Gratton E. Fluctuation Spectroscopy Analysis of Glucose Capped Gold Nanoparticles. Langmuir. 2016 Dec 20;32(50):13409-13417. doi: 10.1021/acs.langmuir.6b02545. Epub 2016 Dec 9. PMID: 27935716; PMCID: PMC5470844.
26.    Contreras-Trigo B, Díaz-García V, Guzmán-Gutierrez E, Sanhueza I, Coelho P, Godoy SE, Torres S, Oyarzún P. Slight pH Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. Sensors (Basel). 2018 Jul 12;18(7):2246. doi: 10.3390/s18072246. PMID: 30002306; PMCID: PMC6068536.
27.    Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front Bioeng Biotechnol. 2020 Aug 13;8:990. doi: 10.3389/fbioe.2020.00990. PMID: 32903562; PMCID: PMC7438450.
28.    Hameed MK, Ahmady IM, Han C, Mohamed AA. Efficient synthesis of amino acids capped gold nanoparticles from easily reducible aryldiazonium tetrachloroaurate(III) salts for cellular uptake study. Amino Acids. 2020 Jul;52(6-7):941-953. doi: 10.1007/s00726-020-02862-z. Epub 2020 Jun 30. PMID: 32607864.
29.    Kumar CS, Raja MD, Sundar DS, Gover Antoniraj M, Ruckmani K. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells). Carbohydr Polym. 2015 Sep 5;128:63-74. doi: 10.1016/j.carbpol.2015.04.010. Epub 2015 Apr 20. PMID: 26005140.
30.    Young Park S, Jin Kim Y, Park G, Kim HH. Neuroprotective effect of Dictyopteris divaricata extract-capped gold nanoparticles against oxygen and glucose deprivation/reoxygenation. Colloids Surf B Biointerfaces. 2019 Jul 1;179:421-428. doi: 10.1016/j.colsurfb.2019.03.066. Epub 2019 Mar 29. PMID: 31003168.
31.    Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther. 2005 Jun;11(6):990-5. doi: 10.1016/j.ymthe.2005.02.010. PMID: 15922971.
32.    Oskuee RK, Dehshahri A, Shier WT, Ramezani M. Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med. 2009 Oct;11(10):921-32. doi: 10.1002/jgm.1374. PMID: 19634133.