The Effects of Moist Heat Sterilization Process on Rheological Properties of Hydrophilic gels containing drug model

Document Type : Original Article

Authors

1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Department of Quality Control, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

10.30476/tips.2022.94633.1138

Abstract

Wound healing is a complex cascade of cellular and biochemical actions. Numerous methods, such as application of topical antimicrobial therapies and wound dressings have been reported to accelerate healing process. One important factor in all mentioned methods is the sterility of the delivery or dressing system. In this study, the effect of steam sterilization on the viscosity of polymeric gels of hydroxyl propyl methyl cellulose, sodium carboxy methyl cellulose, carbomer, and sodium alginate was evaluated. The results showed that carbomer (0.5%) and hydroxyl propyl methyl cellulose (3%) had proper rheological behavior and could be used as gel bases in the rest of the study. In addition, the effect of solubility enhancers on the properties of hydrophilic gels was examined. Tween 80 (0.1 and 1%) and propylene glycol (1 and 10%) were examined as solubility enhancers. The proper gel was prepared from carbomer and hydroxyl propyl methyl cellulose containing 0.1 % tween 80 or 1% propylene glycol. In the next step, Atorvastatin, as a promising wound healing drug model, was added to selected bases to evaluate the rheological properties of the gel. Content uniformity of the drug in the gels was examined either. The results revealed that content uniformity maintained constant in carbomer gel after sterilization. As a result, carbomer could be a proper base to deliver drugs to affected areas after sterilization.
Keywords: Carbomer, Hydroxyl Propyl Methyl Cellulose, Sodium Alginate, Sodium Carboxy Methyl Cellulose, Sterile, Viscosity.
Please cite this article as: Negar Negahban, Shohreh Alipour, Fatemeh Ahmadi, Elahehnaz Parhizkar. The Effects of Moist Heat Sterilization Process on Rheological Properties of Hydrophilic gels containing drug model. Trends in Pharmaceutical Sciences. 2022;8(3):175-182. doi: 10.30476/TIPS.2022.94633.1138

Keywords


1.    Noreen S, Ghumman SA, Batool F, Ijaz B, Basharat M, Noureen S, et al. Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol. 2020 Jun 1;152:1056-1067. doi: 10.1016/j.ijbiomac.2019.10.193. Epub 2019 Nov 18. PMID: 31751751.
2.    Koehler J, Brandl FP, Goepferich AM. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J. 2018;100:1-11.
3.    Pal K, Banthia A, Majumdar DK. Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym. 2009;12(3):197-220.
4.    Wooten MK, Hawkins K. Clean versus sterile: Management of chronic wounds. J Wound Ostomy Continence Nurs. 2001 Sep;28(5):24A-26A. PMID: 11557921.
5.    Negut I, Grumezescu V, Grumezescu AM. Treatment Strategies for Infected Wounds. Molecules. 2018 Sep 18;23(9):2392. doi: 10.3390/molecules23092392. PMID: 30231567; PMCID: PMC6225154.
6.    Weller C, Team V. Interactive dressings and their role in moist wound management. In Advanced textiles for wound care: Woodhead Publishing 2019. p. 105-134.
7.    Rezvani Ghomi E, Khalili S, Nouri Khorasani S, Esmaeely Neisiany R, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci. 2019;136(27):47738.
8.    Ovington LG. Advances in wound dressings. Clin Dermatol. 2007 Jan-Feb;25(1):33-8. doi: 10.1016/j.clindermatol.2006.09.003. PMID: 17276199.
9.    Farsaei S, Khalili H, Farboud ES. Potential role of statins on wound healing: review of the literature. Int Wound J. 2012 Jun;9(3):238-47. doi: 10.1111/j.1742-481X.2011.00888.x. Epub 2011 Nov 4. PMID: 22050652; PMCID: PMC7950468.
10.    Llabot JM, Manzo RH, Allemandi DA. Drug release from carbomer:carbomer sodium salt matrices with potential use as mucoadhesive drug delivery system. Int J Pharm. 2004 May 19;276(1-2):59-66. doi: 10.1016/j.ijpharm.2004.02.006. PMID: 15113614.
11.    Sood A, Granick MS, Tomaselli NL. Wound Dressings and Comparative Effectiveness Data. Adv Wound Care (New Rochelle). 2014 Aug 1;3(8):511-529. doi: 10.1089/wound.2012.0401. PMID: 25126472; PMCID: PMC4121107.
12.    Thomas S. Alginate dressings in surgery and wound management--Part 1. J Wound Care. 2000 Feb;9(2):56-60. doi: 10.12968/jowc.2000.9.2.26338. PMID: 11933281.
13.    Lee PJ, Langer R, Shastri VP. Novel microemulsion enhancer formulation for simultaneous transdermal delivery of hydrophilic and hydrophobic drugs. Pharm Res. 2003 Feb;20(2):264-9. doi: 10.1023/a:1022283423116. PMID: 12636166.
14.    Stojadinovic O, Lebrun E, Pastar I, Kirsner R, Davis SC, Tomic-Canic M. Statins as potential therapeutic agents for healing disorders. Expert Rev Dermatol. 2010 Dec 1;5(6):689-98.
15.    Jowkar F, Namazi MR. Statins in dermatology. Int J Dermatol. 2010 Nov;49(11):1235-43. doi: 10.1111/j.1365-4632.2010.04579.x. PMID: 20964647.
16.    Hamedi A, Yousefi G, Farjadian S, Bour Bour MS, Parhizkar E. Physicochemical and Immunomodulatory Properties of Gum Exudates Obtained from Astragalus myriacanthus and Some of Its Isolated Carbohydrate Biopolymers. Iran J Pharm Res. 2017 Fall;16(4):1520-1530. PMID: 29552060; PMCID: PMC5843313.
17.    Doi M. Explanation for the 3.4‐power law for viscosity of polymeric liquids on the basis of the tube model. J Polym Sci B Polym Phys. 1983;21(5):667-84.
18.    Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. Libros Digitales-Pharmaceutical Press; 2009.
19.    Yang XH, Zhu WL. Viscosity properties of sodium carboxymethylcellulose solutions. Cellulose. 2007 Oct;14(5):409-17.
20.    Leo WJ, McLoughlin AJ, Malone DM. Effects of sterilization treatments on some properties of alginate solutions and gels. Biotechnol Prog. 1990 Jan-Feb;6(1):51-3. doi: 10.1021/bp00001a008. PMID: 1366434.
21.    Parhizkar E, Emadi L, Alipour S. Development and evaluation of midazolam in situ nasal gel properties in presence of solubility enhancers at cilia-friendly pH. J Macromol Res. 2017;25(3):255-61.
22.    Galgatte UC, Chaudhari PD. Preformulation study of poloxamer 407 gels: effect of additives. Int J Pharm Pharm Sci. 2014;6(1):130-3.