Validation of a simple and rapid HPLC-UV method for simultaneous analysis of co-delivered doxorubicin and verapamil and its application to characterization of PLGA nanoparticles

Document Type : Original Article


1 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Drug and Food Control Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.


To overcome developing drug resistance in cancer treatment, combination therapy could be an attractive strategy. It has been shown that doxorubicin anti-cancer properties are improved by P-glycoprotein inhibitors such as verapamil. Polymeric nanoparticles (NPs) of poly lactic-co-glycolic acid (PLGA) can simultaneously deliver verapamil and doxorubicin and provide an effective anti-cancer drug delivery system. The present study aimed to develop an efficient high performance liquid chromatography (HPLC) method for the simultaneous determination of doxorubicin and verapamil encapsulated in PLGA nanoparticles (NPs). Quantification of doxorubicin and verapamil was performed by the HPLC method. The method was developed by evaluating combination of different solvents ratios as mobile phase and modification of the mobile phase rate. A series of doxorubicin and verapamil solutions at concentrations of "6.25, 12.5, 25, 50, and 100 μg/ml" and "0.625, 1.25, 2.5 and 5 μg/ml" were prepared, respectively. The method was validated by calculating selectivity, linearity, accuracy, intra- and inter-day precision. The validated method was used to characterize prepared doxorubicin-verapamil PLGA NPs by determination of drug loading, encapsulation efficiency% and in vitro release. Results indicated that analysis method was selective with notable separation efficiency and acceptable limit of detection and limit of quantification which shows the sensitivity of the method. The linear standard curve with suitable accuracy and precision confirms the validation of method for simultaneous analysis of doxorubicin and verapamil in NPs.
Please cite this article as: Maryam Kazemi, Fatemeh Ahmadi, Mozhdeh piltan, Shohreh Alipour. Validation of a simple and rapid HPLC-UV method for simultaneous analysis of co-delivered doxorubicin and verapamil and its application to characterization of PLGA nanoparticles. Trends in Pharmaceutical Sciences. 2022;8(4):223-232. doi: 10.30476/TIPS.2022.95526.1149


1.    Gupta P, Jani KA, Yang DH, Sadoqi M, Squillante E, Chen ZS. Revisiting the role of nanoparticles as modulators of drug resistance and metabolism in cancer. Expert Opin Drug Metab Toxicol. 2016;12(3):281-9. doi: 10.1517/17425255.2016.1145655. Epub 2016 Feb 15. PMID: 26799671.
2.    Yabroff KR, Lund J, Kepka D, Mariotto A. Economic burden of cancer in the United States: estimates, projections, and future research. Cancer Epidemiol Biomarkers Prev. 2011 Oct;20(10):2006-14. doi: 10.1158/1055-9965.EPI-11-0650. 
3.    Boyle P, Levin B. World cancer report 2008: IARC Press, International Agency for Research on Cancer; 2008. 21-3 p.
4.    Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018 Mar 16;3:7. doi: 10.1038/s41392-017-0004-3. PMID: 29560283; PMCID: PMC5854578.
5.    Majidinia M, Mirza-Aghazadeh-Attari M, Rahimi M, Mihanfar A, Karimian A, Safa A, et al. Overcoming multidrug resistance in cancer: Recent progress in nanotechnology and new horizons. IUBMB Life. 2020 May;72(5):855-871. doi: 10.1002/iub.2215. 
6.    Bissett D, Kerr DJ, Cassidy J, Meredith P, Traugott U, Kaye SB. Phase I and pharmacokinetic study of D-verapamil and doxorubicin. Br J Cancer. 1991 Dec;64(6):1168-71. doi: 10.1038/bjc.1991.484. 
7.    Kathawala RJ, Gupta P, Ashby CR Jr, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat. 2015 Jan;18:1-17. doi: 10.1016/j.drup.2014.11.002. 
8.    Zhang YK, Wang YJ, Gupta P, Chen ZS. Multidrug Resistance Proteins (MRPs) and Cancer Therapy. AAPS J. 2015 Jul;17(4):802-12. doi: 10.1208/s12248-015-9757-1. 
9.    Wang H, Gao Z, Liu X, Agarwal P, Zhao S, Conroy DW, et al. Targeted production of reactive oxygen species in mitochondria to overcome cancer drug resistance. Nat Commun. 2018 Feb 8;9(1):562. doi: 10.1038/s41467-018-02915-8. 
10.    Jiang J, Wang K, Chen Y, Chen H, Nice EC, Huang C. Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther. 2017 Aug 18;2:17036. doi: 10.1038/sigtrans.2017.36. 
11.    Saatci Ö, Borgoni S, Akbulut Ö, Durmuş S, Raza U, Eyüpoğlu E, et al. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene. 2018 Apr;37(17):2251-2269. doi: 10.1038/s41388-017-0108-9. Epub 2018 Feb 2. PMID: 29391599.
12.    Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene. 2003 Oct 20;22(47):7468-85. doi: 10.1038/sj.onc.1206948. 
13.    Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006 Mar;5(3):219-34. doi: 10.1038/nrd1984. 
14.    Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med. 2017 Aug;14(3):212-227. doi: 10.20892/j.issn.2095-3941.2017.0054. 
15.    Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJ, van der Wilt CL, et al. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003 Jun 16;88(12):1963-70. doi: 10.1038/sj.bjc.6601011. 
16.    Zheng W, Li M, Lin Y, Zhan X. Encapsulation of verapamil and doxorubicin by MPEG-PLA to reverse drug resistance in ovarian cancer. Biomed Pharmacother. 2018 Dec;108:565-573. doi: 10.1016/j.biopha.2018.09.039. 
17.    Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017 Nov 1;159:217-231. doi: 10.1016/j.colsurfb.2017.07.038. 
18.    Risnayanti C, Jang YS, Lee J, Ahn HJ. PLGA nanoparticles co-delivering MDR1 and BCL2 siRNA for overcoming resistance of paclitaxel and cisplatin in recurrent or advanced ovarian cancer. Sci Rep. 2018 May 14;8(1):7498. doi: 10.1038/s41598-018-25930-7. 
19.    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012 Jul 20;161(2):505-22. doi: 10.1016/j.jconrel.2012.01.043. 
20.    Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem Rev. 2016 Feb 24;116(4):2602-63. doi: 10.1021/acs.chemrev.5b00346. 
21.    Imre S, Vlase L, Muntean DL. Bioanalytical method validation. Rev Romana de Medicina de Lab. 2008;Vol 10(1):4-5.
22.    Song D, Wang J. Modified resolution factor for asymmetrical peaks in chromatographic separation. J Pharm Biomed Anal. 2003 Aug 21;32(6):1105-12. doi: 10.1016/s0731-7085(03)00026-8. PMID: 12907253.
23.    Emami J, Ghassami N, Ahmadi F. Development and validation of a new HPLC method for determination of lamotrigine and related compounds in tablet formulations. J Pharm Biomed Anal. 2006 Mar 3;40(4):999-1005. doi: 10.1016/j.jpba.2005.07.045. 
24.    Ahmadi F, Bahmyari M, Akbarizadeh A, Alipour S. Doxorubicin-verapamil dual loaded PLGA nanoparticles for overcoming P-glycoprotein mediated resistance in cancer: Effect of verapamil concentration. J Drug Deliv Sci Technol. 2019;53:101206.
25.    Liu Y, Li LL, Qi GB, Chen XG, Wang H. Dynamic disordering of liposomal cocktails and the spatio-temporal favorable release of cargoes to circumvent drug resistance. Biomaterials. 2014 Mar;35(10):3406-15. doi: 10.1016/j.biomaterials.2013.12.089. 
26.    Qin M, Lee YE, Ray A, Kopelman R. Overcoming cancer multidrug resistance by codelivery of doxorubicin and verapamil with hydrogel nanoparticles. Macromol Biosci. 2014 Aug;14(8):1106-15. doi: 10.1002/mabi.201400035. 
27.    Breaux J, Jones K, Boulas P. Analytical methods development and validation. Pharm Technol. 2003;1:6-13.
28.    Takka S, Ocak OH, Acartürk F. Formulation and investigation of nicardipine HCl-alginate gel beads with factorial design-based studies. Eur J Pharm Sci. 1998 Jul;6(3):241-6. doi: 10.1016/s0928-0987(97)10005-7. PMID: 9795073.
29.    Amjadi I, Rabiee M, Hosseini MS. Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation. Iran J Pharm Res. 2013 Fall;12(4):623-34. 
30.    Liu SQ, Tong YW, Yang YY. Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) with varying compositions. Biomaterials. 2005 Aug;26(24):5064-74. doi: 10.1016/j.biomaterials.2005.01.030.