Spasmolytic Effect of Black Bile-reducing Plants from Lamiaceae: the correlation between Traditional Iranian Medicine and Pharmacological and Phytochemical surveys

Document Type : Original Article

Authors

1 Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Phytopharmaceutical Technology and Traditional Medicine Incubator, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

The roots of Traditional Iranian Medicine (TIM) go back to thousand years ago. Based on TIM, black bile, one of the four humors within the body, is the concentrated part of the blood representing a cold and dry quality. Black bile tends to deposit in tissues, leading to diseases such as spasm, which is a painful paralysis-like immobility condition. One of its possible causes is muscle dehydration, resembling the dryness caused by dominance of black bile. In TIM, several medicinal plants are claimed to be effective in the regulation of black bile; among them, the presence of the Lamiceae family is very notable. In this review, the relationship between spasm as one of the symptoms of increasing black bile in the body was discussed. Also, the compounds reported in the black-bile eliminating plants have been found in the literature. The majority of them were from monoterpenes and sesquiterpenes such as citral, carvacrol, fenchone and pulegone in the essential oil of black bile reducing plants. The main compounds properties of black bile reducing plants can be used to orient quantitative system pharmacology models in further studies. 
Please cite this article as: Fatemeh Rostaminejad, Shiva Hemmati, Parmis Badr. Spasmolytic Effect of Black Bile-reducing Plants from Lamiaceae: the correlation between Traditional Iranian Medicine and Pharmacological and Phytochemical surveys. Trends in Pharmaceutical Sciences. 2022;8(4):233-242. doi: 10.30476/TIPS.2022.96146.1157

Keywords


1.    Emtiazy M, Choopani R, Khodadoost M, Tansaz M, Nazem E. Atheroprotector role of the spleen based on the teaching of Avicenna (Ibn Sina). Int J Cardiol. 2013 Jul 15;167(1):26-8. doi: 10.1016/j.ijcard.2012.06.020. Epub 2012 Jun 21. PMID: 22726399.
2.    Avicenna. The cannon of medicine. Sharafkandi A, transed. Tehran: Sorush Publication; 1983:354-57.
3.    Jorjani E. Zakhireye Khwarazmshahi. Emami A, Javadi B, Shams ardakani M, editor. Mashhad: Mashhad Medical University; 
2016:P 65.
4.    Sweeney HL, Hammers DW. Muscle Contraction. Cold Spring Harb Perspect Biol. 2018 Feb 1;10(2):a023200. doi: 10.1101/cshperspect.a023200. PMID: 29419405; PMCID: PMC5793755.
5.    Giuriato G, Pedrinolla A, Schena F, Venturelli M. Muscle cramps: A comparison of the two-leading hypothesis. J Electromyogr Kinesiol. 2018 Aug;41:89-95. doi: 10.1016/j.jelekin.2018.05.006. Epub 2018 May 26. PMID: 29857264.
6.    Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1462. doi: 10.1002/wsbm.1462. Epub 2019 Aug 13. PMID: 31407867; PMCID: PMC6916202.
7.    Tamokou J, Mbaveng A. Antimicrobial activities of African medicinal spices and vegetable. In: Kuete V, editor. Medicinal Spices and Vegetable from Africa. Massachusetts: Academic Press; 2017. p. 207-237.
8.    Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, et al. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. Pain Res Manag. 2018 May 8;2018:7801543. doi: 10.1155/2018/7801543. PMID: 29854039; PMCID: PMC5964621.
9.    Richardson P. The chemistry of the Labiatae: An introduction and overview. In:Harley RM, Reynolds T, editors. Advances in Labiatae Science. London: Botanical Garden Kew. 1992.
10.    Naghibi F, Mosaddegh M, Motamed SM, Ghorbani A. Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. Iran J Pharm Sci. 2005;4(2):63-79.
11.    Mozaffarpour S, Shirafkan H, Taghavi M, Mirzapor M. Investigating the difference between principals of Iranian traditional medicine and modern medicine for providing a model for integrated medicine. Islam Health J. 2014;1(1):10-15.
12.    Aghili MH . Makhzan-al-Advia. Tehran: Tehran University of Medical Sciences; 2009.
13.    Panjalizadeh B, Jalalyazdi M. The effect of aroma therapy with lavender oil and comparison with premedication in patients undergoing angiography. J Biochem Tech. 2019;10(2):138-42.
14.    Shamsi Y, Khan R, Nikhat S. Clinically Significant Improvement in a Case of Bronchial Asthma with Unani Medicine: A Case Report. 
Tradit Integr Med. 2019:130-6.
15.    Rauf A, Akram M, Semwal P, Mujawah AAH, Muhammad N, Riaz Z, et al. Antispasmodic Potential of Medicinal Plants: A Comprehensive Review. Oxid Med Cell Longev. 2021 Nov 11;2021:4889719. doi: 10.1155/2021/4889719. PMID: 34804367; PMCID: PMC8601825.
16.    Gilani AH, Aziz N, Khan MA, Shaheen F, Jabeen Q, Siddiqui BS, et al. Ethnopharmacological evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L. J Ethnopharmacol. 2000 Jul;71(1-2):161-7. doi: 10.1016/s0378-8741(99)00198-1. PMID: 10904159.
17.    Mirabi P, Namdari M, Alamolhoda S, Mojab F. The Effect of Melissa Officinalis Extract on the Severity of Primary Dysmenorrha. Iran J Pharm Res. 2017 Winter;16(Suppl):171-177. PMID: 29844788; PMCID: PMC5963658.
18.    Yarnell E, Abascal K. Spasmolytic Botanicals: Relaxing Smooth Muscle with Herbs. Altern Complement Ther. 2011;17(3):169-74.
19.    Naderi Dastjerdi M, Darooneh T, Nasiri M, Moatar F, Esmaeili S, Ozgoli G. Investigating the Effect of Melissa Officinalis on After-Pains: A Randomized Single-Blind Clinical Trial. J Caring Sci. 2019 Sep 1;8(3):129-138. doi: 10.15171/jcs.2019.019. PMID: 31598505; PMCID: PMC6778308.
20.    Bortoletto CC, Cordeiro da Silva F, Salgueiro Mda C, Motta LJ, Curiki LM, et al. Evaluation of electromyographic signals in children with bruxism before and after therapy with Melissa Officinalis L-a randomized controlled clinical trial. J Phys Ther Sci. 2016 Mar;28(3):738-42. doi: 10.1589/jpts.28.738. Epub 2016 Mar 31. PMID: 27134350; PMCID: PMC4842431.
21.    Khalaja A, Khanib S. Spasmolytic effects of hydroalcoholic extract of Melissa Officinalis on isolated rat ileum. J Rep Pharm Sci. 2018;7(3):260-9.
22.    Roghani Dehkordi F, Enteshari A. The in vitro effect of Melissa officinalis aqueous extract on aortic reactivity in rats with subchronic diabetes. J Basic Clin Pathophysiol. 2013;2(1):44-9.
23.    Soares PM, de Freitas Pires A, de Souza EP, Assreuy AM, Criddle DN. Relaxant effects of the essential oil of Mentha pulegium L. in rat isolated trachea and urinary bladder. J Pharm Pharmacol. 2012 Dec;64(12):1777-84. doi: 10.1111/j.2042-7158.2012.01558.x. Epub 2012 Jul 9. PMID: 23146041.
24.    Amrani S, Harnafi H, Gadi D, Mekhfi H, Legssyer A, Aziz M, Martin-Nizard F, Bosca L. Vasorelaxant and anti-platelet aggregation effects of aqueous Ocimum basilicum extract. J Ethnopharmacol. 2009 Aug 17;125(1):157-62. doi: 10.1016/j.jep.2009.05.043. Epub 2009 Jun 6. PMID: 19505553.
25.    Salmalian H, Saghebi R, Moghadamnia AA, Bijani A, Faramarzi M, Nasiri Amiri F, Bakouei F, Behmanesh F, Bekhradi R. Comparative effect of thymus vulgaris and ibuprofen on primary dysmenorrhea: A triple-blind clinical study. Caspian J Intern Med. 2014 Spring;5(2):82-8. PMID: 24778782; PMCID: PMC3992233.
26.    Mittal R. Role of contemporary therapy in treatment of dysmenorrhea. Int J Adv Res Innov Ideas Tec. 2019;5(1):9-11.
27.    Boskabady MH, Aslani MR, Kiani S. Relaxant effect of Thymus vulgaris on guinea-pig tracheal chains and its possible mechanism(s). Phytother Res. 2006 Jan;20(1):28-33. doi: 10.1002/ptr.1796. PMID: 16397917.
28.    Micucci M, Protti M, Aldini R, Frosini M, Corazza I, Marzetti C, et al. Thymus vulgaris L. Essential Oil Solid Formulation: Chemical Profile and Spasmolytic and Antimicrobial Effects. Biomolecules. 2020 Jun 4;10(6):860. doi: 10.3390/biom10060860. PMID: 32512899; PMCID: PMC7356897.
29.    Golparvar AR, Hadipanah A, Gheisari MM, Khaliliazar R. Chemical constituents of essential oil of Dracocephalum moldavica L. and Dracocephalum kotschyi Boiss. from Iran. Acta Agric Slov. 2016;107(1):25-31.
30.    Dadalioglu I, Evrendilek GA. Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agric Food Chem. 2004 Dec 29;52(26):8255-60. doi: 10.1021/jf049033e. PMID: 15612826.
31.    Baali F, Boumerfeg S, Napoli E, Boudjelal A, Righi N, Deghima A, et al. Chemical composition and biological activities of essential oils from two wild Algerian medicinal plants: Mentha pulegium L. and Lavandula stoechas L. J Essent Oil-Bear Plants. 2019;22(3):821-37.
32.    Świąder K, Startek K, Wijaya CH. The therapeutic properties of Lemon balm (Melissa officinalis L.): Reviewing novel findings and medical indications. J Appl Bot Food Qual. 2019;92:327-35.
33.    Draginic N, Jakovljevic V, Andjic M, Jeremic J, Srejovic I, Rankovic M, et al. Melissa officinalis L. as a Nutritional Strategy for Cardioprotection. Front Physiol. 2021 Apr 22;12:661778. doi: 10.3389/fphys.2021.661778. PMID: 33967832; PMCID: PMC8100328.
34.    Bektašević M, Politeo O, Carev I. Comparative Study of Chemical Composition, Cholinesterase Inhibition and Antioxidant Potential of Mentha pulegium L. Essential Oil. Chem Biodivers. 2021 Mar;18(3):e2000935. doi: 10.1002/cbdv.202000935. Epub 2021 Feb 15. PMID: 33502110.
35.    Abbasi-Maleki S, Kadkhoda Z, Taghizad-Farid R. The antidepressant-like effects of Origanum majorana essential oil on mice through monoaminergic modulation using the forced swimming test. J Tradit Complement Med. 2019 Jan 14;10(4):327-335. doi: 10.1016/j.jtcme.2019.01.003. PMID: 32695649; PMCID: PMC7365779.
36.    Candela RG, Rosselli S, Bruno M, Fontana G. A Review of the Phytochemistry, Traditional Uses and Biological Activities of the Essential Oils of Genus Teucrium. Planta Med. 2021 May;87(6):432-479. doi: 10.1055/a-1293-5768. Epub 2020 Dec 9. PMID: 33296939.
37.    Liu T, Kang J, Liu L. Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. LWT Food Sci Technol. 2021;136:110354.
38.    Diniz do Nascimento L, Moraes AAB, Costa KSD, Pereira Galúcio JM, Taube PS, et al. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants: New Findings and Potential Applications. Biomolecules. 2020 Jul 1;10(7):988. doi: 10.3390/biom10070988. PMID: 32630297; PMCID: PMC7407208.
39.    Zarei A, Changizi-Ashtiyani S, Taheri S, Hosseini N. A brief overview of the effects of Melissa officinalis L. extract on the function of various body organs. Zahedan J Res Med Sci. 2015;17(7).
40.    Bojić M, Maleš Ž, Antolić A, Babić I, Tomičić M. Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta Pharm. 2019 Dec 1;69(4):483-495. doi: 10.2478/acph-2019-0050. PMID: 31639083.
41.    Gajendiran A, Thangaraman V, Thangamani S, Ravi D, Abraham J. Antimicrobial, antioxidant and anticancer screening of Ocimum basilicum seeds. Bull Pharm Res. 2016;6(3):114-9.
42.    Martínez-Vázquez M, Estrada-Reyes R, Martínez-Laurrabaquio A, López-Rubalcava C, Heinze G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: sedative effect and chemical analysis of an aqueous extract. J Ethnopharmacol. 2012 Jun 14;141(3):908-17. doi: 10.1016/j.jep.2012.03.028. 
43.    Nuńez D, De Castro CO. Palaeoethnobotany and archaeobotany of the Labiatae in Europe and the near East.In Harley R.M,  Reynolds  R.M,editor. Advances in Labiatae Science. Royal Botanic Gardens, Kew. 1992;437.
44.    Schmitt S, Schaefer UF, Doebler L, Reichling J. Cooperative interaction of monoterpenes and phenylpropanoids on the in vitro human skin permeation of complex composed essential oils. Planta Med. 2009;75(13):1381-5.
45.    Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils--a review. Food Chem Toxicol. 2008 Feb;46(2):446-75. doi: 10.1016/j.fct.2007.09.106. Epub 2007 Sep 29. PMID: 17996351.
46.    Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003 May;10(10):813-29. doi: 10.2174/0929867033457719. PMID: 12678685.
47.    Buchbauer G, Wallner I. Essential oils: Properties, composition and health effects. Encycl Food Health. 2016.
48.    Silva YMS, Silva MTA, Sampaio PA, Quintans JSS, Quintans-Júnior LJ, Ribeiro LAA. Relaxant effect of carvacrol, citronellal and p-cymene, monoterpenes present in Thymus and Cymbopogon species, in guinea-pig trachea: A comparative study. J Med Plant Res. 2014;8(24):881-8.
49.    Nozohour Y, Maham M, Dalir-Naghadeh B. Spasmolytic activity of pulegone on the isolated bovine ileum contractions. Iran Vet J. 2021;17(3):88-96.
50.    Sadraei H, Ghannadi A, Malekshahi K. Relaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractions. Fitoterapia. 2003 Jul;74(5):445-52. doi: 10.1016/s0367-326x(03)00109-6. PMID: 12837359.
51.    Rehman NU, Ansari MN, Samad A, Ahmad W. In Silico and Ex Vivo Studies on the Spasmolytic Activities of Fenchone Using Isolated Guinea Pig Trachea. Molecules. 2022 Feb 17;27(4):1360. doi: 10.3390/molecules27041360. PMID: 35209147; PMCID: PMC8876211.
52.    Jha NK, Sharma C, Hashiesh HM, Arunachalam S, Meeran MN, Javed H, et al. β-Caryophyllene, A Natural Dietary CB2 Receptor Selective Cannabinoid can be a Candidate to Target the Trinity of Infection, Immunity, and Inflammation in COVID-19. Front Pharmacol. 2021 May 14;12:590201. doi: 10.3389/fphar.2021.590201. PMID: 34054510; PMCID: PMC8163236.
53.    Moon PD, Han NR, Lee JS, Kim HM, Jeong HJ. Effects of Linalyl Acetate on Thymic Stromal Lymphopoietin Production in Mast Cells. Molecules. 2018 Jul 13;23(7):1711. doi: 10.3390/molecules23071711. 
54.    Kwon S, Hsieh YS, Shin YK, Kang P, Seol GH. Linalyl acetate prevents olmesartan-induced intestinal hypermotility mediated by interference of the sympathetic inhibitory pathway in hypertensive rat. Biomed Pharmacother. 2018 Jun;102:362-368. doi: 10.1016/j.biopha.2018.03.095. Epub 2018 Mar 22. PMID: 29571021.