The Effective Participation of a Clinical Pharmacist in Detecting Medication Errors in the COVID-19 Intensive Care Unit

Document Type : Original Article


1 Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Shahid Faghihi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.



With the emergence of the COVID-19 pandemic, a large number of patients required hospitalization and intensive care unit admissions. Patients with pre-existing medical conditions were associated with a higher chance of severe disease. On the other hand, medication errors in part resulting from polypharmacy are commonly observed in hospitalized patients. At the time of the Delta variant peak and the high influx of COVID-19 patients to the hospitals, clinical pharmacy ICU ward rounds were implemented to detect, and prevent medication errors to improve patient safety and care. Patients with known COVID-19 infection that were admitted to the ICU for a duration of 4 months were included in this prospective study. Every day (Saturday to Thursday) ICU patient rounds was performed by the clinical pharmacist. Medication reconciliation was done for all patients to detect probable drug omission or duplication during admission. Pharmaceutical Care Network Europe Foundation (PCNE) classification was used for classifying drug-related problems. A total of 86 patients were evaluated for medication errors during ICU admission. A total of 398 drug-related comments were given and 90% of the interventions were accepted by the attending physician. The most common medication error was attributed to overdosage of medications, mostly glucocorticoid therapy. The survival rate amongst patients was 56.1%. Clinical pharmacy interventions and medication reconciliation at times of pandemics can help towards improvement of clinical practice, patient safety, and saving of medication resources. Early detection of medication errors by clinical pharmacists can prevent further patient complications and death. 


Dena Firouzabadi (Google Scholar)

Negar Firouzabadi (Google Scholar)


1.    Butt AA, Dargham SR, Chemaitelly H, Al Khal A, Tang P, Hasan MR, et al. Severity of Illness in Persons Infected With the SARS-CoV-2 Delta Variant vs Beta Variant in Qatar. JAMA Intern Med. 2022 Feb 1;182(2):197-205. doi: 10.1001/jamainternmed.2021.7949. PMID: 34935861; PMCID: PMC8696690.
2.    Ong SWX, Chiew CJ, Ang LW, Mak TM, Cui L, Toh MPHS, et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin Infect Dis. 2022 Aug 24;75(1):e1128-e1136. doi: 10.1093/cid/ciab721. PMID: 34423834; PMCID: PMC8522361.
3.    Adjei S, Hong K, Molinari NM, Bull-Otterson L, Ajani UA, Gundlapalli AV, et al. Mortality Risk Among Patients Hospitalized Primarily for COVID-19 During the Omicron and Delta Variant Pandemic Periods - United States, April 2020-June 2022. MMWR Morb Mortal Wkly Rep. 2022 Sep 16;71(37):1182-1189. doi: 10.15585/mmwr.mm7137a4. PMID: 36107788; PMCID: PMC9484808.
4.    Paudyal V, Cadogan C, Fialová D, Henman MC, Hazen A, Okuyan B, et al. Provision of clinical pharmacy services during the COVID-19 pandemic: Experiences of pharmacists from 16 European countries. Res Social Adm Pharm. 2021 Aug;17(8):1507-1517. doi: 10.1016/j.sapharm.2020.11.017. Epub 2020 Nov 30. PMID: 33288420; PMCID: PMC7834718.
5.    Bianchi F, Bianchi G, Song D. The long-term impact of the COVID-19 unemployment shock on life expectancy and mortality rates. J Econ Dyn Control. 2023 Jan;146:104581. doi: 10.1016/j.jedc.2022.104581. Epub 2022 Dec 5. PMID: 36506795; PMCID: PMC9721190.
6.    Lee H, Ryu K, Sohn Y, Kim J, Suh GY, Kim E. Impact on Patient Outcomes of Pharmacist Participation in Multidisciplinary Critical Care Teams: A Systematic Review and Meta-Analysis. Crit Care Med. 2019 Sep;47(9):1243-1250. doi: 10.1097/CCM.0000000000003830. PMID: 31135496.
7.    Meyboom RH, Lindquist M, Egberts AC. An ABC of drug-related problems. Drug safety. 2000 Jun;22:415-23.
8.    Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Burke JP. Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 1997 Jan 22-29;277(4):301-6. PMID: 9002492.
9.    Bates DW. Preventing medication errors: a summary. Am J Health Syst Pharm. 2007 Jul 15;64(14 Suppl 9):S3-9; quiz S24-6. doi: 10.2146/ajhp070190. Erratum in: Am J Health Syst Pharm. 2007 Aug 15;64(16):1678. PMID: 17617512.
10.    Chen PZ, Wu CC, Huang CF. Clinical and economic impact of clinical pharmacist intervention in a hematology unit. J Oncol Pharm Pract. 2020 Jun;26(4):866-872. doi: 10.1177/1078155219875806. Epub 2019 Sep 29. PMID: 31566112.
11.    Renaudin P, Coste A, Audurier Y, Berbis J, Canovas F, Jalabert A, et al. Clinical, Economic, and Organizational Impact of the Clinical Pharmacist in an Orthopedic and Trauma Surgery Department. J Patient Saf. 2021 Dec 1;17(8):e1507-e1513. doi: 10.1097/PTS.0000000000000539. PMID: 30365407.
12.    Hailu BY, Berhe DF, Gudina EK, Gidey K, Getachew M. Drug related problems in admitted geriatric patients: the impact of clinical pharmacist interventions. BMC Geriatr. 2020 Jan 13;20(1):13. doi: 10.1186/s12877-020-1413-7. PMID: 31931723; PMCID: PMC6958579.
13.    Klopotowska JE, Kuiper R, van Kan HJ, de Pont AC, Dijkgraaf MG, Lie-A-Huen L, et al. On-ward participation of a hospital pharmacist in a Dutch intensive care unit reduces prescribing errors and related patient harm: an intervention study. Crit Care. 2010;14(5):R174. doi: 10.1186/cc9278. Epub 2010 Oct 4. PMID: 20920322; PMCID: PMC3219276.
14.    Buckley MS, Harinstein LM, Clark KB, Smithburger PL, Eckhardt DJ, Alexander E, et al. Impact of a clinical pharmacy admission medication reconciliation program on medication errors in "high-risk" patients. Ann Pharmacother. 2013 Dec;47(12):1599-610. doi: 10.1177/1060028013507428. Epub 2013 Oct 15. PMID: 24259613.
15.    Lat I, Paciullo C, Daley MJ, MacLaren R, Bolesta S, McCann J, et al. Position Paper on Critical Care Pharmacy Services: 2020 Update. Crit Care Med. 2020 Sep;48(9):e813-e834. doi: 10.1097/CCM.0000000000004437. PMID: 32826496.
16.    Donaldson LJ, Kelley ET, Dhingra-Kumar N, Kieny MP, Sheikh A. Medication Without Harm: WHO's Third Global Patient Safety Challenge. Lancet. 2017 Apr 29;389(10080):1680-1681. doi: 10.1016/S0140-6736(17)31047-4. PMID: 28463129.
17.    Lemtiri J, Matusik E, Cousein E, Lambiotte F, Elbeki N. The role of the critical care pharmacist during the COVID-19 pandemic. Ann Pharm Fr. 2020 Nov;78(6):464-468. doi: 10.1016/j.pharma.2020.09.001. Epub 2020 Oct 7. PMID: 33038310; PMCID: PMC7540194.
18.    Azadi S, Shahabinezhad F, Shafiekhani M. Drug-related Problems in Solid-Organ Transplant Recipients Hospitalized for COVID-19: An Experience of a Referral Tertiary Center in Iran. Iran J Med Sci. 2022 Nov;47(6):577-587. doi: 10.30476/IJMS.2022.93366.2467. PMID: 36380982; PMCID: PMC9652498.
19.    COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at Accessed 10 April 2023
20.    Society of Hospital Pharmacists of Australia Committee of Specialty Practice in Clinical Pharmacy. SHPA standards of practice for clinical pharmacy. J Pharm Pract Res. 2005;35(2):122-46
21.    Khalili H, Karimzadeh I, Mirzabeigi P, Dashti-Khavidaki S. Evaluation of clinical pharmacist's interventions in an infectious diseases ward and impact on patient's direct medication cost. Eur J Intern Med. 2013 Apr;24(3):227-33. doi: 10.1016/j.ejim.2012.11.014. Epub 2012 Dec 12. PMID: 23245928.
22.    Manias E, Williams A, Liew D. Interventions to reduce medication errors in adult intensive care: a systematic review. Br J Clin Pharmacol. 2012 Sep;74(3):411-23. doi: 10.1111/j.1365-2125.2012.04220.x. PMID: 22348303; PMCID: PMC3477343.
23.    Keers RN, Williams SD, Cooke J, Ashcroft DM. Prevalence and nature of medication administration errors in health care settings: a systematic review of direct observational evidence. Ann Pharmacother. 2013 Feb;47(2):237-56. doi: 10.1345/aph.1R147. Epub 2013 Feb 5. PMID: 23386063.
24.    Lewis PJ, Dornan T, Taylor D, Tully MP, Wass V, Ashcroft DM. Prevalence, incidence and nature of prescribing errors in hospital inpatients: a systematic review. Drug Saf. 2009;32(5):379-89. doi: 10.2165/00002018-200932050-00002. PMID: 19419233.
25.    Gates PJ, Baysari MT, Mumford V, Raban MZ, Westbrook JI. Standardising the Classification of Harm Associated with Medication Errors: The Harm Associated with Medication Error Classification (HAMEC). Drug Saf. 2019 Aug;42(8):931-939. doi: 10.1007/s40264-019-00823-4. PMID: 31016678; PMCID: PMC6647434.
26.    Cano EJ, Fonseca Fuentes X, Corsini Campioli C, O'Horo JC, Abu Saleh O, Odeyemi Y, et al. Impact of Corticosteroids in Coronavirus Disease 2019 Outcomes: Systematic Review and Meta-analysis. Chest. 2021 Mar;159(3):1019-1040. doi: 10.1016/j.chest.2020.10.054. Epub 2020 Oct 28. PMID: 33129791; PMCID: PMC7598533.
27.    Butler CR, Wong SPY, Wightman AG, O'Hare AM. US Clinicians' Experiences and Perspectives on Resource Limitation and Patient Care During the COVID-19 Pandemic. JAMA Netw Open. 2020 Nov 2;3(11):e2027315. doi: 10.1001/jamanetworkopen.2020.27315. PMID: 33156349; PMCID: PMC7648254.
28.    Zali A, Khodadoost M, Gholamzadeh S, Janbazi S, Piri H, Taraghikhah N, et al. Mortality among hospitalized COVID-19 patients during surges of SARS-CoV-2 alpha (B.1.1.7) and delta (B.1.617.2) variants. Sci Rep. 2022 Nov 7;12(1):18918. doi: 10.1038/s41598-022-23312-8. PMID: 36344540; PMCID: PMC9640720.
29.    Bosma LBE, Hunfeld NGM, Quax RAM, Meuwese E, Melief PHGJ, van Bommel J, et al. The effect of a medication reconciliation program in two intensive care units in the Netherlands: a prospective intervention study with a before and after design. Ann Intensive Care. 2018 Feb 7;8(1):19. doi: 10.1186/s13613-018-0361-2. PMID: 29417295; PMCID: PMC5803169..
30.    Magrum B, Smetana KS, Thompson M, Elefritz JL, Phelps M, Trolli E, et al. Characterization of Medication Discrepancies and Interventions Resulting From Pharmacy-Led Medication Reconciliation in the Critical Care Setting. J Pharm Pract. 2023 Jan 2:8971900221149788. doi: 10.1177/08971900221149788. Epub ahead of print. PMID: 36592435.
31.    El Hadidi S, Hamdi M, Sabry N. Should Pharmacists Lead Medication Reconciliation in Critical Care? A One-Stem Interventional Study in an Egyptian Intensive Care Unit. J Patient Saf. 2022 Aug 1;18(5):e895-e899. doi: 10.1097/PTS.0000000000000983. Epub 2022 Feb 22. PMID: 35190512.
32.    Ng JJ, Luo Y, Phua K, Choong AMTL. Acute kidney injury in hospitalized patients with coronavirus disease 2019 (COVID-19): A meta-analysis. J Infect. 2020 Oct;81(4):647-679. doi: 10.1016/j.jinf.2020.05.009. Epub 2020 May 8. PMID: 32389782; PMCID: PMC7205641.
33.    Wang R, Kong L, Xu Q, Yang P, Wang X, Chen N, et al. On-ward participation of clinical pharmacists in a Chinese intensive care unit for patients with COVID-19: A retrospective, observational study. Res Social Adm Pharm. 2021 Jan;17(1):1853-1858. doi: 10.1016/j.sapharm.2020.06.005. Epub 2020 Jun 6. PMID: 33317764; PMCID: PMC7832950.
34.    Di Simone E, Fabbian F, Giannetta N, Dionisi S, Renzi E, Cappadona R, et al. Risk of medication errors and nurses' quality of sleep: a national cross-sectional web survey study. Eur Rev Med Pharmacol Sci. 2020 Jun;24(12):7058-7062. doi: 10.26355/eurrev_202006_21699. PMID: 32633400.
35.    Perez M, Masse M, Deldicque A, Beuscart JB, De Groote P, Desbordes J, et al. Analysis of clinical pharmacist interventions in the COVID-19 units of a French university hospital. Eur J Hosp Pharm. 2022 Mar;29(e1):e30-e35. doi: 10.1136/ejhpharm-2020-002542. Epub 2021 Mar 11. PMID: 33707185; PMCID: PMC7956730.