Design, synthesis and docking study of 3,4-dihydropyrimidine-2-one derivatives as inhibitors of the Mitotic Kinesin, Eg5

Document Type : Original Article

Authors

1 Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Department of Medicinal Chemistry, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.

4 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

5 Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

10.30476/tips.2023.98380.1187

Abstract

A series of 3,4-dihydropyrimidine-2-one derivatives were designed and synthesized as monastrol analogs by Biginelli cyclocondensation of a β-keto compounds and aromatic aldehyde with urea or thiourea. Biginelli cyclocondensation usually produces racemic mixtures of 3,4-dihydropyrimidine-2-ones. Enantiomers of 3,4-dihydropyrimidine-2-ones (R and S) often show different biological activities and may even have an opposite action profile. Therefore, developing of the stereoselective synthesis of 3,4-dihydropyrimidine-2-ones is one of the priorities of medicinal chemistry. Following observed diverse pharmacological effects of monastrol, 3,4-dihydropyrimidine-2-ones as new anti-cancer agents are the pharmacological category which improve and decrease the side effects of dihydropyrimidines especially resistance to chemotherapeutic drugs. 3,4-Dihydropyrimidine-2-ones followed their anticancer effects by inhibiting the kinesin motor protein. Because of the specific function of these proteins in mitosis, targeting the Kinesin spindle protein (KSP, or Eg5) as the most dramatic target of the mitotic kinesin family open up an opportunity for the progress of more selective antimitotics with an improved side effect profile. These facts prompted us to investigate if the effects of inhibitory enantiomers (R and S) of 3,4-dihydropyrimidine-2-ones could possibly differ from each other. Therefore, molecular docking of both R and S stereoisomers of 3,4-dihydropyrimidine-2-ones and monastrol was performed to study the interaction between inhibitors and the kinesin spindle protein binding site. According to docking studies, S stereoisomer of D2 (SD2) has the best score among the synthesized compounds and shows probably more stable binding with the active site of the enzyme and can be considered as a candidate for biological evaluation.

Highlights

Hossein Sadeghpour (Google Scholar)

Elham Riazimontazer (Google Scholar)

Keywords


1.    Wordeman L. The kinesin superfamily.  Cytoskeleton and Human Disease: Springer; 2012. p. 55-72.
2.    Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science. 1998 Jan 23;279(5350):519-26. doi: 10.1126/science.279.5350.519. PMID: 9438838.
3.    Endow SA. Microtubule motors in spindle and chromosome motility. Eur J Biochem. 1999 May;262(1):12-8. doi: 10.1046/j.1432-1327.1999.00339.x. PMID: 10231358.
4.    Mandelkow E, Mandelkow EM. Kinesin motors and disease. Trends Cell Biol. 2002 Dec;12(12):585-91. doi: 10.1016/s0962-8924(02)02400-5. PMID: 12495847.
5.    Goodson HV, Kang SJ, Endow SA. Molecular phylogeny of the kinesin family of microtubule motor proteins. J Cell Sci. 1994 Jul;107 ( Pt 7):1875-84. doi: 10.1242/jcs.107.7.1875. PMID: 7983154.
6.    Walczak CE, Mitchison TJ. Kinesin-related proteins at mitotic spindle poles: function and regulation. Cell. 1996 Jun 28;85(7):943-6. doi: 10.1016/s0092-8674(00)81295-7. PMID: 8674121.
7.    Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, et al. A standardized kinesin nomenclature. J Cell Biol. 2004 Oct 11;167(1):19-22. doi: 10.1083/jcb.200408113. PMID: 15479732; PMCID: PMC2041940.
8.    Blangy A, Arnaud L, Nigg EA. Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150. J Biol Chem. 1997 Aug 1;272(31):19418-24. doi: 10.1074/jbc.272.31.19418. PMID: 9235942.
9.    DeBonis S, Simorre JP, Crevel I, Lebeau L, Skoufias DA, Blangy A, et al. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5. Biochemistry. 2003 Jan 21;42(2):338-49. doi: 10.1021/bi026716j. PMID: 12525161.
10.    Blangy A, Lane HA, d'Hérin P, Harper M, Kress M, Nigg EA. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell. 1995 Dec 29;83(7):1159-69. doi: 10.1016/0092-8674(95)90142-6. PMID: 8548803.
11.    Inoué S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell. 1995 Dec;6(12):1619-40. doi: 10.1091/mbc.6.12.1619. PMID: 8590794; PMCID: PMC301321.
12.    Compton DA. Spindle assembly in animal cells. Annu Rev Biochem. 2000;69:95-114. doi: 10.1146/annurev.biochem.69.1.95. PMID: 10966454.
13.    Ferhat L, Cook C, Chauviere M, Harper M, Kress M, Lyons GE, et al. Expression of the mitotic motor protein Eg5 in postmitotic neurons: implications for neuronal development. J Neurosci. 1998 Oct 1;18(19):7822-35. doi: 10.1523/JNEUROSCI.18-19-07822.1998. PMID: 9742151; PMCID: PMC6793023.
14.    Hegde P, Cogswell J, Carrick K, Jackson J, Wood K, Eng W, et al., editors. Differential gene expression analysis of kinesin spindle protein in human solid tumors. Proc Am Soc Clin Oncol; 2003.
15.    Carter BZ, Mak DH, Shi Y, Schober WD, Wang RY, Konopleva M, et al. Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: overcoming imatinib resistance. Cell Cycle. 2006 Oct;5(19):2223-9. doi: 10.4161/cc.5.19.3255. Epub 2006 Oct 1. PMID: 16969080.
16.    Hansen GM, Justice MJ. Activation of Hex and mEg5 by retroviral insertion may contribute to mouse B-cell leukemia. Oncogene. 1999 Nov 11;18(47):6531-9. doi: 10.1038/sj.onc.1203023. PMID: 10597256.
17.    Ding S, Xing N, Lu J, Zhang H, Nishizawa K, Liu S, et al. Overexpression of Eg5 predicts unfavorable prognosis in non-muscle invasive bladder urothelial carcinoma. Int J Urol. 2011 Jun;18(6):432-8. doi: 10.1111/j.1442-2042.2011.02751.x. Epub 2011 Mar 30. PMID: 21449971.
18.    Liu M, Wang X, Yang Y, Li D, Ren H, Zhu Q, Chen Q, Han S, Hao J, Zhou J. Ectopic expression of the microtubule-dependent motor protein Eg5 promotes pancreatic tumourigenesis. J Pathol. 2010 Jun;221(2):221-8. doi: 10.1002/path.2706. PMID: 20455257.
t19.    Castillo A, Morse HC 3rd, Godfrey VL, Naeem R, Justice MJ. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 2007 Nov 1;67(21):10138-47. doi: 10.1158/0008-5472.CAN-07-0326. PMID: 17974955.
20.    Masuda A, Maeno K, Nakagawa T, Saito H, Takahashi T. Association between mitotic spindle checkpoint impairment and susceptibility to the induction of apoptosis by anti-microtubule agents in human lung cancers. Am J Pathol. 2003 Sep;163(3):1109-16. doi: 10.1016/S0002-9440(10)63470-0. PMID: 12937152; PMCID: PMC1868274.
21.    Sarli V, Giannis A. Inhibitors of mitotic kinesins: next-generation antimitotics. ChemMedChem. 2006 Mar;1(3):293-8. doi: 10.1002/cmdc.200500045. PMID: 16892362.
22.    Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene. 2003 Oct 20;22(47):7280-95. doi: 10.1038/sj.onc.1206934. PMID: 14576838; PMCID: PMC4039039.
23.    Joshi HC. Microtubule dynamics in living cells. Curr Opin Cell Biol. 1998 Feb;10(1):35-44. doi: 10.1016/s0955-0674(98)80084-7. PMID: 9484593.
24.    Lane J, Allan V. Microtubule-based membrane movement. Biochim Biophys Acta. 1998 Jun 29;1376(1):27-55. doi: 10.1016/s0304-4157(97)00010-5. PMID: 9666066.
25.    Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. 1997;13:83-117. doi: 10.1146/annurev.cellbio.13.1.83. PMID: 9442869.
26.    Sakowicz R, Finer JT, Beraud C, Crompton A, Lewis E, Fritsch A, Lee Y, Mak J, Moody R, Turincio R, Chabala JC, Gonzales P, Roth S, Weitman S, Wood KW. Antitumor activity of a kinesin inhibitor. Cancer Res. 2004 May 1;64(9):3276-80. doi: 10.1158/0008-5472.can-03-3839. PMID: 15126370.
27.    Jackson JR, Patrick DR, Dar MM, Huang PS. Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer. 2007 Feb;7(2):107-17. doi: 10.1038/nrc2049. PMID: 17251917.
28.    Szakács G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006 Mar;5(3):219-34. doi: 10.1038/nrd1984. PMID: 16518375.
29.    Yan Y, Sardana V, Xu B, Homnick C, Halczenko W, Buser CA, Schaber M, Hartman GD, Huber HE, Kuo LC. Inhibition of a mitotic motor protein: where, how, and conformational consequences. J Mol Biol. 2004 Jan 9;335(2):547-54. doi: 10.1016/j.jmb.2003.10.074. PMID: 14672662.
30.    Rickert KW, Schaber M, Torrent M, Neilson LA, Tasber ES, Garbaccio R, et al. Discovery and biochemical characterization of selective ATP competitive inhibitors of the human mitotic kinesin KSP. Arch Biochem Biophys. 2008;469(2):220-31.
31.    Sakowicz R, Berdelis MS, Ray K, Blackburn CL, Hopmann C, Faulkner DJ, et al. A marine natural product inhibitor of kinesin motors. Science. 1998 Apr 10;280(5361):292-5. doi: 10.1126/science.280.5361.292. PMID: 9535660.
32.    Sarli V, Giannis A. Targeting the kinesin spindle protein: basic principles and clinical implications. Clin Cancer Res. 2008 Dec 1;14(23):7583-7. doi: 10.1158/1078-0432.CCR-08-0120. PMID: 19047082.
33.    Jiang C, You Q. Kinesin spindle protein inhibitors in cancer: a patent review (2008 - present). Expert Opin Ther Pat. 2013 Dec;23(12):1547-60. doi: 10.1517/13543776.2013.833606. Epub 2013 Aug 26. PMID: 23978071.
34.    Matsuno K, Sawada J-i, Asai A. Therapeutic potential of mitotic kinesin inhibitors in cancer. Expert Opin Ther Pat. 2008;18(3):253-74.
35.    Zhang Y, Xu W. Progress on kinesin spindle protein inhibitors as anti-cancer agents. Anticancer Agents Med Chem. 2008 Aug;8(6):698-704. PMID: 18690830.
36.    Knight SD, Parrish CA. Recent progress in the identification and clinical evaluation of inhibitors of the mitotic kinesin KSP. Curr Top Med Chem. 2008;8(10):888-904. doi: 10.2174/156802608784911626. PMID: 18673173.
37.    Huszar D, Theoclitou ME, Skolnik J, Herbst R. Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev. 2009 Jun;28(1-2):197-208. doi: 10.1007/s10555-009-9185-8. PMID: 19156502.
38.    Mayer TU, Kapoor TM, Haggarty SJ, King RW, Schreiber SL, Mitchison TJ. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 1999 Oct 29;286(5441):971-4. doi: 10.1126/science.286.5441.971. PMID: 10542155..
39.    Nair V. Multicomponent Reactions. Edited by Jieping Zhu and Hugues Bienyamé. Wiley Online Library; 2005.
40.    Kappe CO. A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate(1). J Org Chem. 1997 Oct 17;62(21):7201-7204. doi: 10.1021/jo971010u. PMID: 11671828.
41.    PETERSEN H. Syntheses of cyclic ureas by α-ureidoalkylation. Synthesis. 1973;1973(05):243-92.
42.    Riazimontazer E, Sadeghpour H, Nadri H, Sakhteman A, Tüylü Küçükkılınç T, Miri R, et al. Design, synthesis and biological activity of novel tacrine-isatin Schiff base hybrid derivatives. Bioorg Chem. 2019 Aug;89:103006. doi: 10.1016/j.bioorg.2019.103006. Epub 2019 May 21. PMID: 31158577.