Investigation of the physicochemical properties and pharmacokinetics of the active compounds in Quercus infectoria gall extract

Document Type : Commentary-Article

Author

1 Behbahan Faculty of Medical Sciences, Behbahan, Iran.

2 Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.

10.30476/tips.2024.102275.1233

Abstract

The Quercus genus, known as oak trees, provides important bioactive compounds for pharmaceuticals. Quercus infectoria is recognized for its antimicrobial properties, containing Friedelin, Betulinic Acid, and Gallic Acid. The molecular weight, hydrophobicity, polarity, and solubility of these compounds play a key role in their biological activity and pharmacokinetics, which can be evaluated using SwissADME and PubChem. Lipinski's Rule of Five suggests that optimal molecular weights for oral bioavailability fall between 180 and 500 Da. Assessing the ability of compounds to penetrate the blood-brain barrier is crucial for neurological treatments. Friedelin, a pentacyclic triterpene with antimicrobial and anticancer properties, can penetrate cell membranes due to its hydrophobic nature, but absorption may be limited by its molecular weight. Betulinic acid, a triterpene with antiviral and anticancer properties, is well absorbed. Vanillic acid, a water-soluble phenolic compound, is easily absorbed but liver metabolism may affect its bioavailability. Ellagic acid, a polyphenol with antioxidant and anticancer properties, has complex pharmacokinetics due to conjugate formation and protein interactions. Gallic acid may impact its distribution, while phlorizin is being studied for its potential to inhibit glucosidase in diabetes management. Vescalagin's pharmacokinetics may be influenced by its sugar structure and conjugation sites, and low water solubility could limit its bioavailability. Breaking down Quercus infectoria into smaller compounds could enhance its therapeutic effects. Understanding the physicochemical properties and pharmacokinetics of new drugs and nutraceuticals is essential for evaluating their effectiveness, safety, absorption, and minimizing adverse effects. We study the pharmaceutical properties of Quercus infectoria bioactive compounds.

Highlights

Roohallah Yousefi (Google Scholar)

Keywords


1.    Şöhretoğlu, D., & Renda, G. (2020). The polyphenolic profile of Oak (Quercus) species: A phytochemical and pharmacological overview. Phytochemistry Reviews, 19(6), 1379-1426.
2.    Sorathiya S. To Formulate Film Forming Spray using Quercus Infectoria (Oak Gall) for Wound Healing Activity. IJISRT. 2023;8(11): 734-762.
3.    Pars A, Karadag R. Applications of laser radiation on cotton fabrics Dyed gall oak (quercus infectoria olivier). Tekstil ve Mühendis. 2022;29(127):161-7.
4.    Elham A, Arken M, Kalimanjan G, Arkin A, Iminjan M. A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus Infectoria galls. J Ethnopharmacol. 2021 Jun 12;273:113592. doi: 10.1016/j.jep.2020.113592. Epub 2020 Nov 17. PMID: 33217520.
5.    Askari SF, Azadi A, Namavar Jahromi B, Tansaz M, Mirzapour Nasiri A, Mohagheghzadeh A, et al. A comprehensive review about Quercus infectoria G. Olivier gall. Res J Pharmacogn. 2020; 7(1): 67-75.
6.    Taib M, Rezzak Y, Bouyazza L, Lyoussi B. Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. Evid Based Complement Alternat Med. 2020 Jul 31;2020:1920683. doi: 10.1155/2020/1920683. PMID: 32802116; PMCID: PMC7415107.
7.    Khatamifar M, Fatemi SJ, Torkzadeh-Mahani M, Mohammadi M, Hassanshahian M. Green and eco-friendly synthesis of silver nanoparticles by Quercus infectoria galls extract: thermal behavior, antibacterial, antioxidant and anticancer properties. Particul Sci Technol. 2022 Apr 3;40(3):281-9.
8.    Yusof WNSW, Abdullah H. Phytochemicals and Cytotoxicity of Quercus infectoria Ethyl Acetate Extracts on Human Cancer Cells. Trop Life Sci Res. 2020 Apr;31(1):69-84. doi: 10.21315/tlsr2020.31.1.5. Epub 2020 Apr 7. PMID: 32963712; PMCID: PMC7485533.
9.    Burlacu E, Nisca A, Tanase C. A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. Forests. 2020; 11(9):904.
10.    Othón-Díaz ED, Fimbres-García JO, Flores-Sauceda M, Silva-Espinoza BA, López-Martínez LX, Bernal-Mercado AT, et al. Antioxidants in Oak (Quercus sp.): Potential Application to Reduce Oxidative Rancidity in Foods. Antioxidants. 2023; 12(4):861.
11.    Nikitina Olha O. Pharmacognostic Study of the galls of wild representatives of Quercus robur L., created by insects. Res J Pharm Tech. 2021; 14(1):122-128. doi: 10.5958/0974-360X.2021.00022.6
12.    Wan-Nor-Amilah WAW, Syifaa'-Liyana ML, Azlina Y, Shafizol Z, Nurul AA. In Vitro Immunomodulatory Activity of Aqueous Quercus infectoria Gall Extract. Oman Med J. 2021 May 31;36(3):e265. doi: 10.5001/omj.2021.63. PMID: 34113461; PMCID: PMC8167420.
13.    Amilah WA, Mohamad AN, Izani NJ, Arizam MF. Antimicrobial activities of Quercus infectoria gall extracts: A scoping review. J Herb Medicine. 2022 Mar 1;32:100543.
14.    Başyiğit B, Sağlam H, Köroğlu K, Karaaslan M. Compositional analysis, biological activity, and food protecting ability of ethanolic extract of Quercus infectoria gall. J Food Process Preserv. 2020 Sep;44(9):e14692.
15.    Hanon NA, Abd FN. The Antimicrobial Activity of Quercus Infectoria Extracts Against Bacteria Isolated from Wounds Infection. Al-Mustansiriyah J Sci. . 2021 Feb. 24 [cited 2024 Nov. 17];32(1):1-4. 
16.    Dardmah F, Farahpour MR. Quercus infectoria gall extract aids wound healing in a streptozocin-induced diabetic mouse model. J Wound Care. 2021 Aug 2;30(8):618-625. doi: 10.12968/jowc.2021.30.8.618. PMID: 34382850.
17.    Basri DF, Fan SH. The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J Pharmacol. 2005 Jan 1;37(1):26-9.
18.    Chusri S, Voravuthikunchai SP. Detailed studies on Quercus infectoria Olivier (nutgalls) as an alternative treatment for methicillin-resistant Staphylococcus aureus infections. J Appl Microbiol. 2009 Jan;106(1):89-96. doi: 10.1111/j.1365-2672.2008.03979.x. Epub 2008 Dec 19. PMID: 19120622.
19.    Kováč J, Slobodníková L, Trajčíková E, Rendeková K, Mučaji P, Sychrová A, et al. Therapeutic Potential of Flavonoids and Tannins in Management of Oral Infectious Diseases-A Review. Molecules. 2022 Dec 24;28(1):158. doi: 10.3390/molecules28010158. PMID: 36615352; PMCID: PMC9821998.
20.    Dsouza MR, Aishwarya BS, Supriya SS. Anticariogenic activity of galls of Quercus Infectoria Olivier against oral pathogens causing dental caries. Int J Pharm Sci Res. 2020;11:1711-8.
21.    Mahboubi M. Quercus infectoria fruit hulls and galls and female genital disorders. Clinical Phytoscience. 2020 Jul 7;6(1):44.
21.    Mahboubi M. Quercus infectoria fruit hulls and galls and female genital disorders. Clin Phytosci. 2020;6(1):44.
22.    Mehri Ardestani M, Aliahmadi A, Toliat T, Dalimi A, Momeni Z, Rahimi R. Antimicrobial Activity of Quercus infectoria Gall and Its Active Constituent, Gallic Acid, against Vaginal Pathogens. Trad Integr Med. 2019;4(1):12-21.
23.    Kheirandish F, Delfan B, Mahmoudvand H, Moradi N, Ezatpour B, Ebrahimzadeh F, et al. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed Pharmacother. 2016 Aug;82:208-15. doi: 10.1016/j.biopha.2016.04.040. Epub 2016 May 12. PMID: 27470357.
24.    Ozbilgin A, Durmuskahya C, Kayalar H, Ertabaklar H, Gunduz C, Ural IO, et al. Antileishmanial Activity of Selected Turkish Medicinal Plants. Trop J Pharm Res 2014; 13(12):2047-2055 doi: 10.4314/tjpr.v13i12.15
25.    Mustafa H, Ismail N, Wahab WNAWA. Anti-microbial Activity of Aqueous Quercus infectoria Gall Extract against Pathogenic Leptospira. Malays J Med Sci. 2018 Jul;25(4):42-50. doi: 10.21315/mjms2018.25.4.4. Epub 2018 Aug 30. PMID: 30914846; PMCID: PMC6422538.
26.    Zin NNINM, Mohamad MN, Roslan K, Abdul Wafi S, Abdul Moin NI, Alias A, et al. In Vitro Antimalarial and Toxicological Activities of Quercus infectoria (Olivier) Gall Extracts. Malays J Med Sci. 2020 Jul;27(4):36-50. doi: 10.21315/mjms2020.27.4.4. Epub 2020 Aug 19. PMID: 32863744; PMCID: PMC7444841.
27.    Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22. PMID: 26400175; PMCID: PMC4702940.
28.    Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017 Mar 3;7:42717. doi: 10.1038/srep42717. PMID: 28256516; PMCID: PMC5335600.
29.    Daina A, Michielin O, Zoete V. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model. 2014 Dec 22;54(12):3284-301. doi: 10.1021/ci500467k. Epub 2014 Nov 25. PMID: 25382374.
30.    Daina A, Zoete V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016 Jun 6;11(11):1117-21. doi: 10.1002/cmdc.201600182. Epub 2016 May 24. PMID: 27218427; PMCID: PMC5089604.
31.    Yousefi R, Mokarmian S, Jamshidi A. Efficacy of Beta-Secretase-1 Enzyme Inhibitors in Alzheimer's Disease. J Adv Pharm Res. 2023; 7(4): 243-250. doi: 10.21608/aprh.2023.230890.1234