Atorvastatin loaded PVA/alginate fibers as a potential wound dressing

Document Type : Original Article

Authors

Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.

10.30476/tips.2025.106250.1290

Abstract

Wound healing is a complex process that involves cellular and biochemical aspects. Many effective methods and formulations for wound healing have been reported in the studies. Hydrogels containing biodegradable and biocompatible polymers have shown significant effectiveness in wound healing process. Atorvastatin, an effective drug in the wound healing process, accelerates healing through impacting on various stages. In this study, a fiber was formed of two biocompatible polymers, sodium alginate and polyvinyl alcohol, with an optimized concentration of 1.2% and 10%, respectively. The drug was added to the initial polymer solution at a concentration of 1% and was simultaneously electrospun. Glutaraldehyde was used as cross-linker to enhance the physical characteristics of fiber. The fibers were subjected to strength and release assays. The prepared fiber exhibited smooth and uniform three-dimensional structure with proper strength. Atorvastatin was released within 30 minutes. Based on the results obtained, the proposed fiber could potentially be used in wound dressing membranes.

Highlights

Fatemeh Ahmadi (Google Scholar)

Elahehnaz Parhizkar (Google Scholar)

Keywords


1.    Tang Y, Lan X, Liang C, Zhong Z, Xie R, Zhou Y, et al. Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing. Carbohydr Polym. 2019 Sep 1;219:113-120. doi: 10.1016/j.carbpol.2019.05.004. Epub 2019 May 8. PMID: 31151507.
2.    Fu R, Li C, Yu C, Xie H, Shi S, Li Z, et al. A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv. 2016;23(3):828-39. doi: 10.3109/10717544.2014.918676. Epub 2015 Sep 10. PMID: 24870202.
3.    Betha S, Pamula Reddy B, Mohan Varma M, Basava Raju D, Ramana Murthy Kolapalli V. Development of simvastatin electrospun fibers: a novel approach for sustained drug delivery. J Pharm Investig. 2015;45:13-22.
4.    Zahedipour F, Hosseini SA, Reiner Ž, Tedeschi-Reiner E, Jamialahmadi T, Sahebkar A. Therapeutic Effects of Statins: Promising Drug for Topical and Transdermal Administration. Curr Med Chem. 2024;31(21):3149-3166. doi: 10.2174/0929867330666230508141434. PMID: 37157198.
5.    Abu El Hawa AA, Klein D, Bekeny JC, Severin JH, Zolper EG, Tefera E, et al. The impact of statins on wound healing: an ally in treating the highly comorbid patient. J Wound Care. 2022 Feb 1;31(Sup2):S36-S41. doi: 10.12968/jowc.2022.31.Sup2.S36. PMID: 35148640.
6.    Ala S, Alvandipour M, Saeedi M, Hamidian M, Shiva A, Rahmani N, et al. Effects of Topical Atorvastatin (2 %) on Posthemorrhoidectomy Pain and Wound Healing: A Randomized Double-Blind Placebo-Controlled Clinical Trial. World J Surg. 2017 Feb;41(2):596-602. doi: 10.1007/s00268-016-3749-x. PMID: 27738832.
7.    Farsaei S, Khalili H, Farboud ES. Potential role of statins on wound healing: review of the literature. Int Wound J. 2012 Jun;9(3):238-47. doi: 10.1111/j.1742-481X.2011.00888.x. Epub 2011 Nov 4. PMID: 22050652; PMCID: PMC7950468.
8.    Morsy MA, Abdel-Latif RG, Nair AB, Venugopala KN, Ahmed AF, Elsewedy HS, et al. Preparation and Evaluation of Atorvastatin-Loaded Nanoemulgel on Wound-Healing Efficacy. Pharmaceutics. 2019 Nov 13;11(11):609. doi: 10.3390/pharmaceutics11110609. PMID: 31766305; PMCID: PMC6920749.
9.    Liang Y, He J, Guo B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS Nano. 2021 Aug 24;15(8):12687-12722. doi: 10.1021/acsnano.1c04206. Epub 2021 Aug 10. PMID: 34374515.
10.    Xu Y, Chen H, Fang Y, Wu J. Hydrogel Combined with Phototherapy in Wound Healing. Adv Healthc Mater. 2022 Aug;11(16):e2200494. doi: 10.1002/adhm.202200494. Epub 2022 Jul 6. PMID: 35751637.
11.    Alipour S, Negahban N, Ahmadi F, Parhizkar E. The Effects of Moist Heat Sterilization Process on Rheological Properties of Hydrophilic gels containing drug model. Trends pharm sci. 2022;8(3):175-82.
12.    Li Y, Wang J, Wang Y, Cui W. Advanced electrospun hydrogel fibers for wound healing. Compos B Eng. 2021;223:109101.
13.    Bazmandeh AZ, Mirzaei E, Fadaie M, Shirian S, Ghasemi Y. Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: In-vitro and in-vivo studies. Int J Biol Macromol. 2020 Nov 1;162:359-373. doi: 10.1016/j.ijbiomac.2020.06.181. Epub 2020 Jun 20. PMID: 32574734.
14.    Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio. 2023 Jun 23;21:100710. doi: 10.1016/j.mtbio.2023.100710. PMID: 37545561; PMCID: PMC10401296.
15.    Lai HJ, Kuan CH, Wu HC, Tsai JC, Chen TM, Hsieh DJ, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater. 2014 Oct;10(10):4156-66. doi: 10.1016/j.actbio.2014.05.001. Epub 2014 May 9. PMID: 24814882.
16.    Taemeh MA, Shiravandi A, Korayem MA, Daemi H. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym. 2020 Jan 15;228:115419. doi: 10.1016/j.carbpol.2019.115419. Epub 2019 Oct 1. PMID: 31635749.
17.    Lee CH, Liu KS, Cheng CW, Chan EC, Hung KC, Hsieh MJ, et al. Codelivery of Sustainable Antimicrobial Agents and Platelet-Derived Growth Factor via Biodegradable Nanofibers for Repair of Diabetic Infectious Wounds. ACS Infect Dis. 2020 Oct 9;6(10):2688-2697. doi: 10.1021/acsinfecdis.0c00321. Epub 2020 Sep 28. PMID: 32902952.
18.    Dwivedi C, Pandey I, Pandey H, Ramteke PW, Pandey AC, Mishra SB, et al. Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. Nano-and Microscale Drug Delivery Systems: Elsevier; 2017. p. 147-64.
19.    Ahmadi F, Mazloomi MR, Parhizkar E. Preparation and Evaluation of Carbamazepine Particles Loaded in Mucoadhesive Film for Treatment of Trigeminal Neuralgia. Trends Pharm Sci. 2024;10(3):215-222.
20.    Hamedi A, Yousefi G, Farjadian S, Bour Bour MS, Parhizkar E. Physicochemical and Immunomodulatory Properties of Gum Exudates Obtained from Astragalus myriacanthus and Some of Its Isolated Carbohydrate Biopolymers. Iran J Pharm Res. 2017 Fall;16(4):1520-1530. PMID: 29552060; PMCID: PMC5843313.
21.    Parhizkar E, Emadi L, Alipour S. Development and evaluation of midazolam in situ nasal gel properties in presence of solubility enhancers at cilia-friendly pH. Macromol Res. 2017;25:255-61.
22.    Han X, Huo P, Ding Z, Kumar P, Liu B. Preparation of Lutein-Loaded PVA/Sodium Alginate Nanofibers and Investigation of Its Release Behavior. Pharmaceutics. 2019 Sep 2;11(9):449. doi: 10.3390/pharmaceutics11090449. PMID: 31480706; PMCID: PMC6781311.
23.    Jadbabaei S, Kolahdoozan M, Naeimi F, Ebadi-Dehaghani H. Preparation and characterization of sodium alginate-PVA polymeric scaffolds by electrospinning method for skin tissue engineering applications. RSC Adv. 2021 Sep 15;11(49):30674-30688. doi: 10.1039/d1ra04176b. PMID: 35479869; PMCID: PMC9041156.
24.    Zhang R, Zhao W, Ning F, Zhen J, Qiang H, Zhang Y, et al. Alginate Fiber-Enhanced Poly(vinyl alcohol) Hydrogels with Superior Lubricating Property and Biocompatibility. Polymers (Basel). 2022 Sep 28;14(19):4063. doi: 10.3390/polym14194063. PMID: 36236011; PMCID: PMC9571041.
25.    Sobhanian P, Khorram M, Hashemi SS, Mohammadi A. Development of nanofibrous collagen-grafted poly (vinyl alcohol)/gelatin/alginate scaffolds as potential skin substitute. Int J Biol Macromol. 2019 Jun 1;130:977-987. doi: 10.1016/j.ijbiomac.2019.03.045. Epub 2019 Mar 6. PMID: 30851329.
26.    Stone SA, Gosavi P, Athauda TJ, Ozer RR. In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Mater Lett. 2013;112:32-5.
27.    Pakolpakçıl A. Effect of glutaraldehyde crosslinking parameters on mechanical and wetting properties of PVA/NaAlg electrospun mat. SAUJS. 2022;26(5):990-9.
28.    Yang JM, Yang JH, Tsou SC, Ding CH, Hsu CC, Yang KC, et al. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber. Mater Sci Eng C Mater Biol Appl. 2016 Sep 1;66:170-177. doi: 10.1016/j.msec.2016.04.068. Epub 2016 Apr 21. PMID: 27207051.
29.    Wang Q, Ju J, Tan Y, Hao L, Ma Y, Wu Y, et al. Controlled synthesis of sodium alginate electrospun nanofiber membranes for multi-occasion adsorption and separation of methylene blue. Carbohydr Polym. 2019 Feb 1;205:125-134. doi: 10.1016/j.carbpol.2018.10.023. Epub 2018 Oct 9. PMID: 30446087.
30.    Soto-Quintero A, Castillo EIG, Lizárraga KG, Barba-Pingarrón A, Hernández M. Enhancing the performance of nanostructured PVA/SA scaffolds through incorporation of macromolecules: From synergistic effects to advanced multifunctionalities. Mater Lett. 2024;376:137251.
31.    Doustdar F, Olad A, Ghorbani M. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold. Int J Biol Macromol. 2022 May 31;208:912-924. doi: 10.1016/j.ijbiomac.2022.03.193. Epub 2022 Mar 31. Erratum in: Int J Biol Macromol. 2024 May;267(Pt 1):131382. doi: 10.1016/j.ijbiomac.2024.131382. PMID: 35367272.
32.    Rowe RC, Sheskey PJ, Quinn M. Handbook of pharmaceutical excipients: London-Chicago: Pharmaceutical Press; 2009.
33.    Diksha S, Dhruv D, DN P, Mansi H. Sustained release drug delivery system with the role of natural polymers: A review. J Drug Deliv Ther. 2019;9:913-923.