L-arginine regulates mitochondrial function and oxidative stress in the acute kidney injury model of unilateral ureter obstruction

Document Type : Original Article

Authors

1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Halal Research Center, Iran Food and Drug Administration, Tehran, Iran.

4 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

5 Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

10.30476/tips.2025.105274.1279

Abstract

Acute kidney injury (AKI) is a significant clinical problem associated with high morbidity and mortality. Unilateral ureter obstruction (UUO) is a well-established model for studying the pathophysiology of AKI. L arginine (ARG), a precursor of nitric oxide, has been shown to possess renoprotective properties. This study aims to investigate the protective effects of ARG in an animal model of UUO-induced AKI. Male BALB/c mice were randomly allotted into sham-operated, UUO, and UUO + L-Arginine. UUO was surgically induced by ligating the left ureter. The treatment group received ARG (100, 250, and 500 mg/kg/day) intraperitoneally for seven days post-UUO surgery. Renal function was assessed by measuring plasma creatinine (Cr) and blood urea nitrogen (BUN) levels. Mitochondrial function was evaluated by determining mitochondrial membrane potential, dehydrogenases activity, and mitochondrial swelling. Oxidative stress markers, including ROS formation, lipid peroxidation, protein carbonylation, and tissue antioxidant capacity, were also measured in the kidney tissue. UUO led to significant renal dysfunction, as evidenced by increased serum Cr and BUN levels (P<0.001). Mitochondrial dysfunction was indicated by decreased mitochondrial dehydrogenase activity, mitochondrial depolarization, and increased mitochondrial swelling (P<0.001). Additionally, UUO-induced oxidative stress was demonstrated. It was found that ARG treatment significantly improved renal function by modulating mitochondrial function and decreasing oxidative stress markers (P<0.05). These findings suggest that ARG may have therapeutic potential in managing AKI by preserving mitochondrial function and reducing oxidative damage.

Highlights

Seyed Mohammad Amin Kashani (Google Scholar)

Narges Abdoli (Google Scholar)

Negar Azarpira (Google Scholar)

Hossein Niknahad (Google Scholar)

Reza Heidari (Google Scholar)

Keywords


1.    Luyckx VA, Tonelli M, Stanifer JW. The global burden of kidney disease and the sustainable development goals. Bull World Health Organ. 2018 Jun 1;96(6):414-422D. doi: 10.2471/BLT.17.206441. Epub 2018 Apr 20. PMID: 29904224; PMCID: PMC5996218.
2.    Jha V, Al-Ghamdi SMG, Li G, Wu MS, Stafylas P, Retat L, Card-Gowers J, Barone S, Cabrera C, Garcia Sanchez JJ. Global Economic Burden Associated with Chronic Kidney Disease: A Pragmatic Review of Medical Costs for the Inside CKD Research Programme. Adv Ther. 2023 Oct;40(10):4405-4420. doi: 10.1007/s12325-023-02608-9. Epub 2023 Jul 26. PMID: 37493856; PMCID: PMC10499937.
3.    Ommati MM, Amjadinia A, Mousavi K, Azarpira N, Jamshidzadeh A, Heidari R. N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress. 2021 Mar;24(2):213-228. doi: 10.1080/10253890.2020.1777970. Epub 2020 Jun 22. PMID: 32510264.
4.    Abdoli N, Sadeghian I, Mousavi K, Azarpira N, Ommati MM, Heidari R. Suppression of cirrhosis-related renal injury by N-acetyl cysteine. Curr Res Pharmacol Drug Discov. 2020 Oct 13;1:30-38. doi: 10.1016/j.crphar.2020.100006. PMID: 34909640; PMCID: PMC8663932.
5.    Stolf AM, Cardoso CC, Acco A. Effects of Silymarin on Diabetes Mellitus Complications: A Review. Phytother Res. 2017 Mar;31(3):366-374. doi: 10.1002/ptr.5768. Epub 2017 Jan 25. PMID: 28124457.
6.    Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol Sci. 2017 Jul;38(7):592-607. doi: 10.1016/j.tips.2017.04.005. Epub 2017 May 24. PMID: 28551354.
7.    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004 Oct;287(4):C817-33. doi: 10.1152/ajpcell.00139.2004. PMID: 15355853.
8.    Ommati MM, Heidari R, Ghanbarinejad V, Aminian A, Abdoli N, Niknahad H. The neuroprotective properties of carnosine in a mouse model of manganism is mediated via mitochondria regulating and antioxidative mechanisms. Nutr Neurosci. 2020 Sep;23(9):731-743. doi: 10.1080/1028415X.2018.1552399. Epub 2019 Mar 11. PMID: 30856059.
9.    Heidari R. The footprints of mitochondrial impairment and cellular energy crisis in the pathogenesis of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and Fanconi's syndrome: A comprehensive review. Toxicology. 2019 Jul 1;423:1-31. doi: 10.1016/j.tox.2019.05.002. Epub 2019 May 13. PMID: 31095988.
10.    Tang C, Dong Z. Mitochondria in Kidney Injury: When the Power Plant Fails. J Am Soc Nephrol. 2016 Jul;27(7):1869-72. doi: 10.1681/ASN.2015111277. Epub 2016 Jan 7. PMID: 26744487; PMCID: PMC4926990.
11.    Niknahad AM, Ommati MM, Farshad O, Moezi L, Heidari R. Manganese-induced nephrotoxicity is mediated through oxidative stress and mitochondrial impairment. J Renal Hepatic Disorder. 2020;4(2);1-10. doi: 10.15586/jrenhep.2020.66.
12.    Cherla G, Jaimes EA. Role of L-arginine in the pathogenesis and treatment of renal disease. J Nutr. 2004 Oct;134(10 Suppl):2801S-2806S; discussion 2818S-2819S. doi: 10.1093/jn/134.10.2801S. PMID: 15465789.
13.    Morris CR, Brown LAS, Reynolds M, Dampier CD, Lane PA, Watt A, et al. Impact of arginine therapy on mitochondrial function in children with sickle cell disease during vaso-occlusive pain. Blood. 2020 Sep 17;136(12):1402-1406. doi: 10.1182/blood.2019003672. PMID: 32384147; PMCID: PMC7498366.
14.    Cherian L, Chacko G, Goodman C, Robertson CS. Neuroprotective effects of L-arginine administration after cortical impact injury in rats: dose response and time window. J Pharmacol Exp Ther. 2003 Feb;304(2):617-23. doi: 10.1124/jpet.102.043430. PMID: 12538814.
15.    Hirfanoglu I, Turkyilmaz C, Turkyilmaz Z, Onal E, Soylemezoglu F, Karabulut R, et al. Neuroprotective effect of L-arginine in a neonatal rat model of hypoxic-ischemia. Int J Neurosci. 2019 Nov;129(11):1139-1144. doi: 10.1080/00207454.2019.1636794. Epub 2019 Jul 9. PMID: 31234674.
16.    Barros CDS, Livramento JB, Mouro MG, Higa EMS, Moraes CT, Tengan CH. L-Arginine Reduces Nitro-Oxidative Stress in Cultured Cells with Mitochondrial Deficiency. Nutrients. 2021 Feb 6;13(2):534. doi: 10.3390/nu13020534. PMID: 33562042; PMCID: PMC7914615.
17.    Zhang H, Liu X, Fan Y, Yu Y, Loor JJ, Elsabagh M, et al. l-Arginine Alleviates Hydrogen Peroxide-Induced Oxidative Damage in Ovine Intestinal Epithelial Cells by Regulating Apoptosis, Mitochondrial Function, and Autophagy. J Nutr. 2021 Apr 8;151(4):1038-1046. doi: 10.1093/jn/nxaa428. PMID: 33693729.
18.    Klahr S. The role of nitric oxide in hypertension and renal disease progression. Nephrol Dial Transplant. 2001;16 Suppl 1:60-2. doi: 10.1093/ndt/16.suppl_1.60. PMID: 11369823.
19.    Saleh S, El-Demerdash E. Protective effects of L-arginine against cisplatin-induced renal oxidative stress and toxicity: role of nitric oxide. Basic Clin Pharmacol Toxicol. 2005 Aug;97(2):91-7. doi: 10.1111/j.1742-7843.2005.pto_114.x. PMID: 15998355.
20.    Elbassuoni EA, Ragy MM, Ahmed SM. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed Pharmacother. 2018 Dec;108:799-808. doi: 10.1016/j.biopha.2018.09.093. Epub 2018 Sep 22. PMID: 30253372.
21.    Hesketh EE, Vernon MA, Ding P, Clay S, Borthwick G, Conway B, Hughes J. A murine model of irreversible and reversible unilateral ureteric obstruction. J Vis Exp. 2014 Dec 20;(94):52559. doi: 10.3791/52559. PMID: 25549273; PMCID: PMC4396952.
22.    Saad EA. Curative and protective effects of L-arginine on carbon tetrachloride-induced hepatotoxicity in mice. Biochem Biophys Res Commun. 2012 Jun 22;423(1):147-51. doi: 10.1016/j.bbrc.2012.05.102. Epub 2012 May 24. PMID: 22634310.
23.    Heidari R, Niknahad H. The Role and Study of Mitochondrial Impairment and Oxidative Stress in Cholestasis. Methods Mol Biol. 2019;1981:117-132. doi: 10.1007/978-1-4939-9420-5_8. PMID: 31016651.
24.    Heidari R, Ommati MM, Niknahad H. Methods for measuring brain mitochondrial impairment and oxidative stress in hepatic encephalopathy. In: Balzano T, editor. Experimental and Clinical Methods in Hepatic Encephalopathy Research. New York, NY: Springer US; 2025. p. 293-313.
25.    Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H. Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol. 2018 Jun;4(2):72-82. doi: 10.5114/ceh.2018.75956. Epub 2018 May 25. PMID: 29904723; PMCID: PMC6000746.
26.    Heidari R, Babaei H, Eghbal MA. Amodiaquine-induced toxicity in isolated rat hepatocytes and the cytoprotective effects of taurine and/or N-acetyl cysteine. Res Pharm Sci. 2014 Mar-Apr;9(2):97-105. PMID: 25657778; PMCID: PMC4311296.
27.    Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, et al. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett. 2021 Oct 1;349:12-29. doi: 10.1016/j.toxlet.2021.05.012. Epub 2021 Jun 2. Erratum in: Toxicol Lett. 2022 Jan 1;354:65. doi: 10.1016/j.toxlet.2021.07.006. PMID: 34089816.
28.    Shafiekhani M, Ommati MM, Azarpira N, Heidari R, Salarian AA. Glycine supplementation mitigates lead-induced renal injury in mice. J Exp Pharmacol. 2019 Feb 18;11:15-22. doi: 10.2147/JEP.S190846. PMID: 30858736; PMCID: PMC6385776.
29.    Heidari R, Moezi L, Asadi B, Ommati MM, Azarpira N. Hepatoprotective effect of boldine in a bile duct ligated rat model of cholestasis/cirrhosis. PharmaNutrition. 2017;5(3);109-17. doi: 10.1016/j.phanu.2017.07.001.
30.    Siavashpour A, Khalvati B, Azarpira N, Mohammadi H, Niknahad H, Heidari R. Poly (ADP-Ribose) polymerase-1 (PARP-1) overactivity plays a pathogenic role in bile acids-induced nephrotoxicity in cholestatic rats. Toxicol Lett. 2020 May 16;330:144-158. doi: 10.1016/j.toxlet.2020.05.012. Epub ahead of print. PMID: 32422328.
31.    Heidari R, Rasti M, Shirazi Yeganeh B, Niknahad H, Saeedi A, Najibi A. Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine. Bioimpacts. 2016;6(1):3-8. doi: 10.15171/bi.2016.01. Epub 2016 Mar 28. PMID: 27340618; PMCID: PMC4916549.
32.    Heidari R, Taheri V, Rahimi HR, Shirazi Yeganeh B, Niknahad H, Najibi A. Sulfasalazine-induced renal injury in rats and the protective role of thiol-reductants. Ren Fail. 2016;38(1):137-41. doi: 10.3109/0886022X.2015.1096731. Epub 2015 Oct 19. PMID: 26479898.
33.    Li W, Lu Y, Lou Y, Zhao S, Cui W, Wang Y, et al. FFNT25 ameliorates unilateral ureteral obstruction-induced renal fibrosis. Ren Fail. 2019 Nov;41(1):419-426. doi: 10.1080/0886022X.2019.1612430. PMID: 31140898; PMCID: PMC6566665.
34.    Rezaei H, Honarpishefard Z, Ghaderi F, Rouhani A, Jamshidzadeh A, Kashani SMA, et al. Mitochondrial impairment and oxidative stress are essential mechanisms involved in the pathogenesis of acute kidney injury. J Renal Hepatic Disorder. 2023;7(2);30-45. doi: 10.15586/jrenhep.v7i2.94.
35.    Piko N, Bevc S, Hojs R, Ekart R. The Role of Oxidative Stress in Kidney Injury. Antioxidants (Basel). 2023 Sep 16;12(9):1772. doi: 10.3390/antiox12091772. PMID: 37760075; PMCID: PMC10525550.
36.    Dendooven A, Ishola DA Jr, Nguyen TQ, Van der Giezen DM, Kok RJ, Goldschmeding R, et al. Oxidative stress in obstructive nephropathy. Int J Exp Pathol. 2011 Jun;92(3):202-10. doi: 10.1111/j.1365-2613.2010.00730.x. Epub 2010 Aug 27. PMID: 20804541; PMCID: PMC3101492.
37.    Yin WH, Chen JW, Tsai C, Chiang MC, Young MS, Lin SJ. L-arginine improves endothelial function and reduces LDL oxidation in patients with stable coronary artery disease. Clin Nutr. 2005 Dec;24(6):988-97. doi: 10.1016/j.clnu.2005.07.003. Epub 2005 Sep 6. PMID: 16140428.
38.    Suschek CV, Schnorr O, Hemmrich K, Aust O, Klotz LO, Sies H, Kolb-Bachofen V. Critical role of L-arginine in endothelial cell survival during oxidative stress. Circulation. 2003 May 27;107(20):2607-14. doi: 10.1161/01.CIR.0000066909.13953.F1. Epub 2003 May 12. PMID: 12742995.
39.    Böger RH. The pharmacodynamics of L-arginine. J Nutr. 2007 Jun;137(6 Suppl 2):1650S-1655S. doi: 10.1093/jn/137.6.1650S. PMID: 17513442.
40.    Wu G, Meininger CJ. Arginine nutrition and cardiovascular function. J Nutr. 2000 Nov;130(11):2626-9. doi: 10.1093/jn/130.11.2626. PMID: 11053497.
41.    Liang M, Wang Z, Li H, Cai L, Pan J, He H, et al. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol. 2018 May;115:315-328. doi: 10.1016/j.fct.2018.03.029. Epub 2018 Mar 22. PMID: 29577948.
42.    Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol. 2014 Feb 15;306(4):F367-78. doi: 10.1152/ajprenal.00571.2013. Epub 2013 Dec 4. PMID: 24305473.
43.    Blagov AV, Orekhova VA, Zhuravlev AD, Yakovlev AA, Sukhorukov VN, Orekhov AN. Development of mitochondrial dysfunction and oxidative stress in chronic kidney disease. Eur J Inflamm. 2024;22(1721727X241227349. doi: 10.1177/1721727X241227349.
44.    Ishimoto Y, Inagi R. Mitochondria: a therapeutic target in acute kidney injury. Nephrol Dial Transplant. 2016 Jul;31(7):1062-9. doi: 10.1093/ndt/gfv317. Epub 2015 Sep 1. PMID: 26333547.
45.    Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med. 2008 Jul 1;45(1):18-31. doi: 10.1016/j.freeradbiomed.2008.03.020. Epub 2008 Apr 4. PMID: 18439435; PMCID: PMC2572721.
46.    Nakamura T, Lipton SA. Emerging roles of S-nitrosylation in protein misfolding and neurodegenerative diseases. Antioxid Redox Signal. 2008 Jan;10(1):87-101. doi: 10.1089/ars.2007.1858. PMID: 17961071.
47.    Li Q, Liu Y, Che Z, Zhu H, Meng G, Hou Y, et al. Dietary L-arginine supplementation alleviates liver injury caused by Escherichia coli LPS in weaned pigs. Innate Immun. 2012 Dec;18(6):804-14. doi: 10.1177/1753425912441955. Epub 2012 Mar 22. PMID: 22441699.
48.    Kurokawa T, An J, Tsunekawa K, Shimomura Y, Kazama S, Ishikawa N, et al. Effect of L-arginine supplement on liver regeneration after partial hepatectomy in rats. World J Surg Oncol. 2012 May 31;10:99. doi: 10.1186/1477-7819-10-99. PMID: 22651848; PMCID: PMC3449194.