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Abstract
 Heavy metals are environmental pollutants, which pose toxicity toward biological systems. Most 
organs are susceptible to heavy metals-induced toxicity. Hence, finding protective agents against heavy 
metals-induced toxicity is valuable. The post-nuclear supernatant (PNS) has been accepted as an in vitro 
model for assessing xenobiotics-induced toxicity toward biological systems. Monitoring the toxic effects 
of a large number of xenobiotics in a short time is one of the superiorities of PNS system. The goal of the 
present study was to validate the PNS as an in vitro model for investigating the effect of heavy metals (Cd, 
Co, Cu, Fe, As, Hg, Cr, and Pb)-induced toxicity and evaluating the potential protective effects of glycine 
and betaine. Markers of oxidative stress including ROS formation, lipid peroxidation, and glutathione con-
tent in addition of to succinate dehydrogenase activity (MTT test) were monitored in the presence of heavy 
metals alone or in combination with glycine (1 mM) and betaine (100 µM). Our results suggest that PNS 
preparations can be used as an appropriate model for future investigation of xenobiotics-induced toxicity 
and estimation of the protective properties of different agents. Indeed, further evaluations in other experi-
mental models could reveal the protective properties of betaine and glycine against heavy metals-induced 
organ injury.

Keywords: Amino acids, Environmental toxicology, Hepatotoxicity, Hepatoprotection, Organ Injury.
.................................................................................................................................

...........................................................................................................................

Corresponding Author: Reza Heidari, Pharmaceutical Sciences Re-
search Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Email: rheidari@sums.ac.ir & rezaheidari@hotmail.com

Recieved: 29/04/2018; Accepted: 29/05/2018

Original Article

1. Introduction
 Heavy metals are environmental pollut-
ants, whose exposure is associated with a wide 
range of health problems in humans. Cancer, neu-
rological diseases, diabetes, and many other dis-
orders might directly associate with heavy metal 
over-exposure (1-8). Several mechanisms have 
been proposed for metal-induced toxicity toward 

biological systems. Among these mechanisms, 
oxidative stress and its subsequent complications 
seem to play a primary role (7, 8). Oxidative stress 
is an impairment in the balance of production and 
detoxification of reactive oxygen species (ROS). 
Therefore, administration of antioxidant protective 
molecules might prevent heavy metal toxicity.
 Finding experimental models for evalua-
tion and monitoring of the toxic effects of xeno-
biotics has a great value. Among the experimental 
modes, those with higher efficacy of monitoring 



Trends in Pharmaceutical Sciences 2018: 4(2): 113-124.

Reza Heidari et al.

a large number of xenobiotics in a short time and 
using fewer laboratory animals are of considerable 
attention. The post-nuclear supernatant (PNS) is 
an in vitro model for evaluation of a large number 
of xenobiotics and give a reasonable estimation of 
their toxicity for further assessment in other ex-
perimental models (9).

2. Materials and methods 
2.1. Chemicals
 Glycine and Betaine (Trimethylglycine), 
were purchased from Sigma (St. Louis, MO, 
USA). 4,2 hydroxyethyl,1-piperazineethane-
sulfonic acid (HEPES), 3-(N-morpholino) pro-
pane sulfonic acid (MOPS), dimethyl sulfoxide 
(DMSO), D-mannitol, fatty acid free bovine se-
rum albumin (BSA, Fraction V), thiobarbituric 
acid (TBA), chobalte chloride, iron sulfate, cad-
mium chloride, copper sulfate, trichloroacetic acid 
(TCA), 3-[4,5dimethylthiazol-2-yl]-2,5-diphenyl-
tetrazolium bromide (MTT), rhodamine123, coo-
massie brilliant blue, ethylene glycol-bis (2-ami-
noethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 
sodium succinate, hydroxymethyl aminomethane 
hydrochloride (Tris-HCl), and ethylenediaminetet-
raacetic acid (EDTA) were purchased from Merck 
(Darmstadt, Germany). All salts for preparing buf-
fer solutions (analytical grade) were obtained from 
Merck (Darmstadt, Germany). 

2.2. Animals
 Male Sprague-Dawley rats (250-300 g) 
were obtained from Animal Breeding Center of 
Shiraz University of Medical Sciences, Shiraz 
Iran. Rats were housed in cages with wood-chip 
bedding at a temperature of 24±1 °C and relative 
humidity of ≈40%. Animals had free access to a 
standard rodents chow diet (Behparvar®, Teh-
ran, Iran) and tap water. Animals were handled in 
compliance with the guidelines of the laboratory 
animal care and use approved by the institutional 
ethics committee of Shiraz University of Medical 
Sciences, Shiraz, Iran (#11630/11576). 

2.3. Post-nuclear supernatant (PNS) preparation 
from liver tissue
 Liver-derived PNS was prepared based on 
the differential centrifugation method (9). Briefly, 

rats were anesthetized (Thiopental 80 mg/kg, i.p) 
and the liver was excised and washed with ice-
cooled sodium phosphate buffer (0.1 M, 4 ºC). 
Liver tissue was homogenized in phosphate buffer 
(1: 10 w:v tissue: buffer ratio, 4 ºC). Afterward, 
tissue homogenate was centrifuged (1000 g, 20 
min, 4 ºC). The supernatant was collected, and the 
centrifugation process was repeated. Finally, the 
supernatant was collected and used as PNS. For 
evaluation of heavy metals toxicity, PNS (10 ml) 
was incubated with different concentrations of 
the investigated heavy metals for 1 h at 37 ºC in a 
shaker incubator. Betaine and glycine were added 
15 min before PNS exposure to heavy metals. The 
protein content of samples was measured based on 
the Bradford method for standardization of the ob-
tained data.

2.4. Reactive oxygen species formation 
 Reactive oxygen species (ROS) forma-
tion in PNS samples was estimated using 2′, 7′ 
dichlorofluorescein diacetate as the fluorescence 
probe (10-15). Briefly, PNS samples (100 µL) 
were mixed with Tris-HCl buffer (1 mL; pH=7.4 
4 ºC) and DCF (final concentration 10 µM) (16, 
17). The mixture was incubated at 37 ºC (15 min, 
in the dark). Finally, the fluorescence intensity 
(FI) of samples was assessed using a FLUOstar 
Omega® multifunctional microplate reader (BMG 
Labtech, Germany) with λexcitation=485 nm and  
λemission=525 nm (10, 18).

2.5. Brain tissue glutathione content
 2.5 mL of the PNS samples were added to 
2 ml of distilled water (4 ºC) and 1 ml of trichlo-
roacetic acid (50% w/v; 4 ºC) (19-21). Samples 
were mixed well and centrifuged (10,000 g, 4 °C, 
25 min). Afterward, 1 mL of the supernatant was 
mixed with 4 mL of Tris buffer (pH=8.9; 4 ºC), 
and 100 µl of DTNB (10 mM in methanol) (16, 
17). The absorbance of the developed color was 
measured at λ=412 nm using a FLUOstar Omega® 

multifunctional microplate reader (BMG Labtech, 
Germany) (22).

2.6. Lipid peroxidation
 The thiobarbituric acid reactive substanc-
es (TBARS) test was used as a method to assess 
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lipid peroxidation in the brain tissue (22-25). The 
reaction mixture was consisted of 500 µL of PNS, 
1 mL of thiobarbituric acid (0.375%, w/v), and 3 
mL of metaphosphoric acid (1% w/v, pH=2). Sam-
ples were mixed well and heated (100 °C; 45 min). 
Then, the mixture was cooled, and 2 mL of n-buta-
nol was added. Samples were vigorously vortexed 
and centrifuged (10,000 g for 5 min). Finally, ab-
sorbance of the developed color in n-butanol phase 
was read at λ=532  nm using a FLUOstar Omega® 
multifunctional microplate reader (BMG Labtech, 
Germany) (22).

2.7. Ferric reducing antioxidant power (FRAP) of 
the brain tissue
 FRAP assay is a method to measure the 
formation of a blue colored Fe2+-tripyridyl-tri-
azine compound from the colorless oxidized Fe3+, 
which is formed by the action of electron-donat-
ing antioxidants (26, 27). In the current study, the 
working FRAP reagent was prepared by mixing 10 
volumes of acetate buffer (300 mmol/L, pH=3.6), 
with 1 volume of TPTZ (10 mmol/L in 40 mmol/L 
hydrochloric acid) and 1 volume of ferric chloride 
(20 mmol/L). All solutions were freshly prepared. 
Then, 50 µL of PNS sample and 150 µL of deion-
ized water were added to 1.5 mL of the FRAP re-
agent (28). The reaction mixture was incubated at 
37 ºC for 5 min. in the dark. Finally, samples were 
centrifuged (13000 g, 5 min., 4 ºC) and absorbance 
of the developed color was measured at λ=595 nm 
by a FLUOstar Omega® multifunctional micro-

plate reader (BMG Labtech, Germany) (11, 29).

2.8. Succinate dehydrogenase activity (MTT test)
 A colorimetric method based on the  
reduction of the 3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide (MTT) was ap-
plied for the determination of mitochondrial dehy-
drogenases activity (30-33). Briefly, 1 mL of PNS 
was incubated with 40 µl of MTT (0.4% w:v; 37 
°C for 30 min, in the dark) (32, 34). Then, samples 
were centrifuged (10,000 g, 5 min) and the pel-
let of purple formazan crystals was dissolved in 
1 mL of dimethyl sulfoxide (DMSO). Afterward, 
0.1 ml of the dissolved formazan was added to a 
96 well plate. Finally, the optical density (OD) at  
λ=570 nm was measured with an EPOCH plate 
reader (BioTek® Instruments, Highland Park, 
USA) (30, 31).

2.9. Statistical analysis
 Data are given as the Mean±SD. Data 
comparison was conducted by the one-way  
analysis of variance (ANOVA) with Tukey’s mul-
tiple comparison tests as the post hoc. Differences 
were considered statistically significant when 
P<0.05.

3. Results 
 Monitoring the toxic effects of heavy met-
als in the liver-derived PNS was performed by 
MTT assay (Figure 1). It was found that increas-
ing concentrations of Fe, Co, Cd, Pb, Hg, Cr, and 
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Figure 1. Methyl tetrazolium assay for concentration-response of the heavy metals toxicity.
Data are given as Mean±SD (n=8).
*Indicates significantly different as compared with control (concentration of 0 mM) (P<0.05).
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Cu significantly decreased dehydrogenases activ-
ity in comparison with control PNS (Figure 1). On 
the other hand, it was found that pre-incubation of 
liver PNS with betaine (100 µM) and glycine (1 

mM) prevented heavy metal-induced decrease in 
dehydrogenases activity (MTT test) (Figures 2 and 
3). It was also found that PNS exposure to Tl, As, 
and Ba caused no significant changes in the MTT 
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Figure 2. Effect of glycine on the heavy metals toxicity (MTT assay) in liver-derived post- nuclear super-
natant. Data are given as Mean±SD (n=8).
*Indicates significantly different as compared with control (P<0.05).
aIndicates significantly different as compared with the heavy metal-treated group (P<0.05).
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Figure 3. Effect of betaine on the heavy metals toxicity (MTT assay) in the liver post-nuclear supernatant.
Data are given as Mean±SD (n=8).
*Indicates significantly different as compared with control (P<0.05).
aIndicates significantly different as compared with the heavy metal-treated group (P<0.05).
bIndicates significantly different as compared with the heavy metal-treated group (P<0.01).
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test (Figure 1).
 Significant elevation in ROS formation 
was detected in heavy metal-exposed liver PNS 

(Figures 4 and 5). It was found that betaine (100 
µM) and glycine (1 mM) supplementation de-
creased heavy metal-induced ROS formation in 
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Figure 4. Heavy metals-induced oxidative stress in the liver post-nuclear supernatant and the effect of glycine supple-
mentation. Liver-derived post-nuclear supernatant was treated with heavy metals for 60 min. and the DCF fluores-
cence intensity was assessed. Data are given as Mean±SD (n=8). DCF: Dichlorofluorescein. ***Indicates significantly 
different as compared with control (P<0.001). aIndicates significantly different as compared with the heavy metal-
treated group (P<0.01).
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Figure 5. Effect of betaine treatment on the heavy metals-induced oxidative stress in the liver post-nuclear super-
natant. Liver-derived post-nuclear supernatant was treated with heavy metals for 60 min. and the DCF fluorescence 
intensity was assessed. Data are given as Mean±SD (n=8). DCF: Dichlorofluorescein.
***Indicates significantly different as compared with control (P<0.001).
aIndicates significantly different as compared with the heavy metal-treated group (P<0.01).
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the liver-derived PNS (Figures 4 and 5).
 Heavy metals caused significant lipid 
peroxidation in liver PNS preparations (Figures 6 
and 7). On the other hand, betaine (100 µM) and 

glycine (1 mM) treatment decreased heavy metal-
induced lipid peroxidation (Figures 6 and 7).
 It was found that the total antioxidant ca-
pacity of PNS was significantly decreased when 
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Figure 6. Heavy metals-induced lipid peroxidation in the liver post-nuclear supernatant and the effect of glycine treat-
ment. Data are given as Mean±SD (n=8). ***Indicates significantly different as compared with control (P<0.001). 
aIndicates significantly different as compared with the heavy metal-treated group (P<0.01).
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Figure 7. Effect of betaine treatment on the heavy metal-induced lipid peroxidation in the liver post-nuclear super-
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heavy metals were added (Figures 8 and 9). Ad-
ministration of betaine (100 µM) and glycine (1 
mM) preserved PNS antioxidant capacity in the 

presence of the investigated heavy metals (Figures 
8 and 9).

 

 

To
ta

la
nt

iox
ida

nt
ca

pa
cit

y
(%

of
Co

nt
ro

l)

0

5 0

1 0 0

1 5 0

C d C o n c e n tra tio n (m M )

***

a

***

*** *** ***

a
a

a

n s

0 0 .1 0 .5 1 5 1 0

H e a v y m e ta l a lo n e

H e a v y m e ta l + G ly c in e 1 m M

To
ta

la
nt

iox
ida

nt
ca

pa
cit

y
(%

of
Co

nt
ro

l)

0

5 0

1 0 0

1 5 0

C r C o n c e n tra tio n (m M )

*** *** ***

***

a a a
a

0 0 .1 0 .5 1 5 1 0

To
ta

la
nt

iox
ida

nt
ca

pa
cit

y
(%

of
Co

nt
ro

l)

0

5 0

1 0 0

1 5 0

C o C o n c e n tra tio n (m M )

***

a

*** *** *** ***

a a a

n s

0 0 .1 0 .5 1 5 1 0

To
ta

la
nt

iox
ida

nt
ca

pa
cit

y
(%

of
Co

nt
ro

l)

0

5 0

1 0 0

1 5 0

H g C o n c e n tra tio n (m M )

***

***

***

a
a

n s

0 0 .1 0 .5 1 5 1 0

***

a

To
ta

la
nt

iox
ida

nt
ca

pa
cit

y
(%

of
Co

nt
ro

l)

0

5 0

1 0 0

1 5 0

F e C o n c e n tra tio n (m M )

***

a

*** *** ***

***

a a a

a

0 0 .1 0 .5 1 5 1 0

To
ta

la
nt

iox
ida

nt
ca

pa
cit

y
(%

of
Co

nt
ro

l)

0

5 0

1 0 0

1 5 0

P b C o n c e n tra tio n (m M )

***

a

*** *** ***

***

a a

a
a

0 0 .1 0 .5 1 5 1 0

To
ta

la
nt

iox
ida

nt
ca

pa
cit

y
(%

of
Co

nt
ro

l)

0

5 0

1 0 0

1 5 0

C u C o n c e n tra tio n (m M )

***

a

***

*** ***

***

a

a
a a

0 0 .1 0 .5 1 5 1 0

Figure 8. Effect of glycine treatment on the total antioxidant capacity of liver-derived post-nuclear supernatant ex-
posed to heavy metals. Data are given as Mean±SD (n=8).
***Indicates significantly different as compared with control (P<0.001).
aIndicates significantly different as compared with heavy metal-treated group (P<0.01).
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Figure 9. Effect of betaine on the total antioxidant capacity of liver-derived post-nuclear supernatant exposed to heavy 
metals. Data are given as Mean±SD (n=8). ***Indicates significantly different as compared with control (P<0.001). 
aIndicates significantly different as compared with the heavy metal-treated group (P<0.01).
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4. Discussion
 Heavy metals are environmental pollut-
ants with a wide range of adverse effects in dif-
ferent organs (8, 35). Mechanistically, oxidative 
stress and its related complications play an essen-
tial role in heavy metals-induced organ injury (7, 
8). Therefore, administration of antioxidant agents 
might have protective value. In the current study, 
the oxidative stress-mediated injury induced by 
heavy metals was monitored in an in vitro model 
of liver-derived post-nuclear supernatant (PNS). It 
was found that glycine (1 mM) and betaine (100 
µM) supplementation could provide protective 
properties against heavy metals oxidative stress 
and toxicity.
 A wide range of diseases is attributed to 
heavy metals overexposure (8, 35, 36). Heavy met-
als could induce deleterious complications such as 
cancer and/or debilitating neurological diseases 
(37-40). Hence, finding protective agents against 
metal-induced toxicity has significant clinical 
value. Glycine and its methylated form, betaine, 
are abundantly found in different food sources (41-
44). These chemicals are safe even at high doses 
(41, 42). Therefore, they could be good candidates 
as protective agents against xenobiotics (e.g., 
heavy metals)-induced injury toward biological 
systems. 
 Glycine is the simplest amino acid with 
several pharmacological properties (11, 32, 45, 
46). Anti-inflammatory, antioxidant, and cytopro-
tective properties of glycine have been reported 
in previous investigations (11, 32, 45-50). On the 
other hand, glycine is a constituent of the glutathi-
one (GSH) molecule as the primary cellular anti-
oxidant system. In the current study, it was found 
that glycine supplementation could ameliorate 
heavy metals-induced injury by modulating oxi-
dative stress and its associated complications. The 
cytoprotective properties of betaine also have been 

reported in different experimental models (23, 51-
55). Betaine supplementation effectively mitigat-
ed oxidative stress and its associated events (54, 
56-58). Hence, betaine could protect biological 
targets such as antioxidant enzymes and biomem-
brane lipids against ROS. In the current investiga-
tion, we found that betaine supplementation (100 
µM) alleviated biomarkers of oxidative stress in 
heavy metal-exposed PNS. All these data could 
imply the potential protective properties of betaine 
and glycine against heavy metal toxicity in other 
experimental models.
 PNS is a convenient experimental tool to 
estimate the toxicity of different xenobiotics (e.g., 
drugs, heavy metals, etc.). Rapid monitoring of a 
large number of xenobiotics is one of the major 
superiorities for the PNS system.
 In conclusion, our data indicate that PNS 
could be a good experimental tool to monitor 
heavy metal-induced oxidative stress and evaluate 
the protective properties of different agents against 
this complication. Indeed, PNS system-derived 
data give an estimation of the cytotoxicity/cyto-
protective effects of different chemicals. There-
fore, further studies in other experimental models 
are needed to confirm the data obtained from the 
PNS preparations.
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