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Abstract
	 Prebiotics	are	known	as	fermented	ingredients	with	specific	health	benefits.	The	two	main	fermen-
tative	substrates	of	dietary	origin	are	non-digestible	carbohydrates	and	proteins,	which	escape	digestion	in	
the	small	intestine.	Beside	traditional	protocols	for	production	of	prebiotics,	there	are	some	commercial	
advanced	methods	for	the	mass	production	of	prebiotics	with	acceptable	health	effects.	On	the	other	hand,	
different	types	of	nondigestible	oligosaccharides	(NDO)	are	used	in	the	food	and	drug	industries	as	func-
tional	foods	and	nutraceuticals	due	to	their	prebiotic	effects	and	also	immunomodulation	results	(ex.	SCFA	
modulate	chemokine	expression	in	the	intestinal	epithelial	cells).	Prebiotics	with	novel	and	various	health	
benefits	suggest	a	bright	future	for	improving	the	public	health.
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1. Introduction
	 Prebiotics	 were	 firstly	 defined	 as	 non-
digestible	food	ingredients	that	beneficially	affect	
the	host	by	selectively	stimulating	the	growth	and/
or	activity	of	one	or	a	limited	number	of	bacteria	
in	the	colon,	and	thus	improve	the	host	health	(1).	
Then,	Gibson	et al.	defined	prebiotics	as	‘a	selec-
tively	 fermented	 ingredient	 that	 allows	 specific	
changes,	 both	 in	 the	 composition	 and/or	 activity	
in	the	gastrointestinal	microflora	that	confers	ben-
efits	upon	host	well-being	and	health	(2).	The	final	
definition	was	‘A	dietary	prebiotic	is	a	selectively	
fermented	ingredient	that	results	in	specific	chang-
es	 in	 the	 composition	 and/or	 activity	 of	 the	 gas-
trointestinal	microbiota,	thus	conferring	benefit(s)	
upon	host	health	(3).	The	prebiotic	conception	ac-
centuates	 the	 specific	 stimulation	 of	 microbiota	

to	 decrease	 the	 metabolic	 activity	 of	 potentially	
harmful	 bacterial.	 This	 section	 focusses	 essen-
tially	on	primary	metabolic	pathways.	Most	of	the	
colon’s	micro-flora	are	strictly	anaerobic	bacteria,	
and	their	energy	originate	from	fermentation.	The	
two main dietary origin of fermentative substrates 
are	 non-digestible	 carbohydrates	 (dietary	 fibers,	
resistant	 starch,	 and	 non-digestible	 oligosaccha-
rides	of	plant	origin)	and	proteins	that	escape	di-
gestion	in	the	small	intestine	(4-6).	The	other	im-
portant	 group	 of	 substances	 for	 bacterial	 growth	
are	proteins,	peptides	and	amino	acids.	Currently,	
two	 chemical	 groups	 including	 inulin-type	 fruc-
tans	and	the	galacto-oligosaccharides	have	gained	
the	majority	of	the	scientific	research	attentions	for	
prebiotic	effects	(7).	In	this	review	article,	we	aim	
to	present	recent	advances	in	the	field	of	produc-
tion	 and	 utilization	 of	 prebiotics	 as	well	 as	 their	
nutritional	and	pharmaceutical	properties.
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2. Current advances in the production of  
prebiotics
	 Traditional	 dietary	 sources	 of	 prebiotics	
include	wheat,	 soybeans,	 bananas,	 barley,	 onion,	
garlic,	 asparagus,	 Jerusalem	artichoke	 tuber,	 rye,	
and	 chicory	 root.	 Some	 of	 synthetic	 prebiotics	
are	 fructo-oligosaccharides,	 lactulose,	 galactooli-
gosaccharides,	 xylo-oligosaccharides,	 isomalt-
ose-oligosaccharide,	 malto-oligosaccharide,	 and	
isomaltulose	 (8).	 Prebiotics	 can	 be	 produced	 by	
transgalactosylation	 of	 carbohydrates	 from	 nu-
merous	 raw	 materials	 such	 as	 starch,	 sucrose,	
lactose,	 and	 xylan	 via	 chemical	 and	 enzymatic	
methods	(9).	By	transgalactosylation	activity	dur-
ing	the	hydrolysis	of	lactose	with	β-galactosidase,	
galacto-oligosaccharides	could	be	produced	(10).	
Several	 sources	 of	 β-galactosidase	 for	 the	 trans-
galactosylation	 reaction	 include	Aspergillus ory-
zae	(11),	Sirobasidium magnum	(12),	Penicillium 
simplicissimum	(13),	Bacillus circulans	(14),	Bifi-
dobacterium infantis	(15),	Bullera singularis	(16),	
Escherichia coli,	Kluyveromyces marxianus	 (17),	
and Kluyveromyces lactis	(15).
	 Lactulose	is	a	non-digestible	prebiotic	by	
mammalian	enzymes,	which	is	not	hydrolyzed	or	
absorbed	in	the	small	intestine.	As	a	disaccharide,	
it	 is	 composed	of	 galactosyl	 β	 (1,4)	 fructose	 de-
rived	from	the	primary	and	secondary	isomeriza-
tion	of	lactose	(18).	Bacillus subtilis was found to 
be	an	effective	producer	of	prebiotic	disaccharide	
lactosucrose	(19).	Lactosucrose	has	been	also	pro-
duced	 from	 sucrose	 and	 lactose	 by	 the	 action	 of	
an	 enzyme,	 β-fructofuranosidase,	 from	 Arthro-
bacter	sp.	K-1	(20).	In	other	studies,	lactosucrose	
has	 been	 produced	 successfully	 by	 Sterigmato-
myces elviae	 (21),	Zymomonas mobilis	 (22),	 and	 
Bacillus circulans	 (23).	 Lactulose	 has	 been	 also	
successfully	 synthesized	 by	 a	 dual-enzymatic	
method in organic-aqueous two-phase media us-
ing	lactose	and	fructose	as	the	raw	materials	(24,	
25).	The	dual-enzymatic	system	consisted	of	 im-
mobilized	lactase	and	immobilized	glucose	isom-
erase	 (26).	 Immobilized	 lactase	 is	 prepared	 by	
cross-linking	of	the	free	lactase	into	Fe3O4-chito-
san	magnetic	microspheres	(26,	27).	The	continu-
ous	enzymatic	process	has	been	developed	for	the	 
production	 of	 lactulose	 through	 transgalactosyl-
ation	 using	 free	 and	 immobilized	 β-glycosidase	

from P. furiosus (28).
	 Fructo-oligosaccharides	 (FOS)	 can	 be	
produced	 by	 the	 degradation	 of	 polyfructose	 or	
inulin	(29-31).	Commercially,	FOS	is	usually	pro-
duced	by	the	transfructosylation	of	saccharose	by	
β-fructosidase	 (32).	Aspergillus japonicas,	A.	ni-
ger	(33),	and	Xanthophyllomyce dendrorhous	(34)	
have	been	used	for	the	production	of	FOS	in	sev-
eral	studies.	
	 Isomaltulose	has	been	produced	from	su-
crose using free Erwinia	 sp.	 D12	 (35),	 Serratia 
plymuthica	 (36),	 Protaminobacter rubrum	 (8),	
Serratia plymuthica	(8),	and	Enterobacter	sp.	(37).	
Here,	there	is	an	opportunity	to	apply	microalgae	
for the production of prebiotics such as carotenoids 
and	fatty	acids	(38,	39).
	 Beta-glucans	 are	 found	 in	 algae,	 mush-
rooms,	 and	marine	 plants,	 and	 are	mainly	made	
and	extracted	from	barley	and	oat	(40).	Inulin,	as	a	
polymer	of	fructan	monomers,	is	one	of	the	main		
natural	 plant-derived	polysaccharide	with	 a	 vari-
ous	nutritional	and	pharmaceutical	benefits.	 (41).	
Oligofructose	 can	 be	 achieved	 by	 chemical	 deg-
radation	of	beta-glucans	with	endoglycosidase	en-
zymes,	while	transfructosylation	of	sucrose	leads	
to	production	of	FOSs	(41,	42).	
	 Classically,	GOSs	contain	2-10	molecules	
of	 galactose	 and	 1	molecule	 of	 glucose,	 and	 are	
mainly	produced	by	glycosylation	of	lactose	gen-
erally	 by	 β-galactosidases	 (43,	 44).	 Isomaltooli-
gosaccharides	 containing	 glucose	 monomers	 are	
made	from	the	enzymatic	digestion	of	corn	starch	
with	 α-glucosidase,	 α-amylase,	 and	 pullulanase	
(45).	Guar	gum	is	frequently	utilized	in	dairy,	bak-
ery,	and	is	made	from	the	endosperm	of	the	plant	
Cyamopsis	tetragonolobus	(46).	

3. Health benefits of prebiotics
	 Different	types	of	nondigestible	oligosac-
charides	(NDO)	are	used	in	food	and	pharmaceuti-
cal	industries	because	of	their	prebiotic	effects	(47,	
48).	As	 mentioned	 before,	 prebiotics	 are	 nondi-
gestible	food	ingredients	that	stimulate	the	growth	
and/or	activity	of	one,	or	a	limited	number	of	mi-
crobial	flora	in	the	gut	and	bring	health	benefits	to	
the	host	(49).
	 As	prebiotics	have	very	 low	toxicity	and	
have	 reputable	health	benefits	 for	 the	host,	 these	
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products	present	a	great	supplementary	value	from	
a	hygienic	point	of	view.	In	addition,	exploitation	
of	prebiotics	as	a	part	of	 functional	 foods	by	 the	
food industry has important economic advantag-
es,	 and	 is	 frequently	presented	 as	 an	 example	of	
knowledge-based	economic	growth	(50,	51).
	 Structurally,	 prebiotics	 are	 carbohydrates	
that	 reach	 the	 lower	gastrointestinal	 tract	 in	 sub-
stantial	 amounts.	 NDOs	 are	 not	 hydrolyzed	 by	
enzymes	 secreted	 into	 the	 upper	 gastrointestinal	
tract	because	of	glycosidic	bonds	such	as	β(2→1)	
in	FOS	(52).	Therefore,	the	molecule	remains	too	
large	to	be	absorbed	in	the	small	intestine.	Howev-
er,	these	glycosidic	bonds	can	often	be	hydrolyzed	
by	 enzymes	 produced	 by	 the	 bacteria	 present	 in	
the	lower	gastrointestinal	tract,	and	the	hydrolysis	
products	are	mostly	fermented	by	the	micro-flora	
population.	 Short-chain	 fatty	 acids	 are	 produced	
and	the	colonic	pH	decreases.	It	also	causes	rush-
ing	of	the	intestinal	transit	due	to	stimulation	of	the	
growth	of	colonic	microbiota	leading	to	increased	
gas	 production	 and	water	 retention	 in	 feces	 (53-
57).	 These	 properties	 as	 well	 as	 their	 selective	
promotion	 of	 beneficial	 bacteria,	 have	 led	 to	 the	
application	 of	 prebiotics	 in	 the	 treatment	 or	 pre-
vention	 of	 conditions	 such	 as	 constipation,	 diar-
rhea,	inflammatory	bowel	disease,	necrotizing	en-
terocolitis,	septic	shock,	diabetes,	and	allergies	to	
dietary	proteins	(58-60).	The	possible	benefits	of	
prebiotics	are	enhanced	by	the	low	toxicity	credit-
ed	to	these	compounds.	However,	it	should	be	em-
phasized	 that	 in	 some	 cases	 prebiotics/probiotics	
may	be	harmful,	such	as	in	one	study	that	patients	
with acute pancreatitis were treated with probiot-
ics	(61).	In	addition	to	the	above,	these	NDO	may	
wield	 different	 properties	 independent	 of	 their	
prebiotic	 activity.	 For	 instance,	 they	 prevent	 the	
adhesion of pathogenic bacteria to human epithe-
lial	cells.	Galactooligosaccharides	have	 the	high-
est	antiadhesion	ability	among	all	prebiotics	(62).	
Prebiotics	 also	modulate	 cytokine	 production	 by	
the	 intestinal	 epithelial	 cells,	which	 is	 applicable	
in	the	control	and	prevention	of	infections	and	ma-
lignancies	(63).	Interestingly,	prebiotics	have	been	
reported	to	be	taken	up	by	Caco-2	cells,	and	may	
modulate	sub-epithelial	cells	(64).	In	addition,	 in 
vitro	 studies	 have	 shown	 that	 prebiotics	 regulate	
cytokine	production	 in	human	cord	blood	mono-

nuclear	cells	(65,	66).
	 GI	 tract	 hosts	 various	 types	 of	 the	 cells	
with	important	roles	in	immune	system	responses,	
which	are	influenced	by	prebiotics	(67,	68).	There	
is	 no	 known	 exact	 mechanisms	 affecting	 on	 the	
immune	 system.	 However,	 the	 metabolites	 such	
as	SCFAs,	 especially	butyrates,	 are	 shown	 to	 in-
fluence	macrophages,	T	cells,	 and	dendritic	 cells	
(69).
	 Prebiotics	 are	 known	 as	 modulatory	
agents	that	regulate	the	bioavailability	of	nutrients,	
energy	,	and	storage,	the	agents	associated	with	the	
host	 obesity	 (70,	 71).	On	 the	 other	 hand,	 bifido-
bacteria	population	is	inversely	correlated	with	fat	
mass	 and	glucose	 intolerance	 (72,	 73).	Other	 in-
stances	are	 inulin-type	 fructans,	which	affect	gut	
metabolism	 and	 stimulate	 immune	 cell	 activity	
leading	to	declined	weight	gain	and	fat	mass	(74).
	 Several	 clinical	 purposes	 could	 be	 pro-
posed	by	modulating	 effects	 of	 prebiotics	on	 the	
immune	system	(67).	Boosting	the	immune	func-
tion for resistance against infections may serve as 
a	complementary	tool	for	prevention	or	treatment	
of	infectious	diseases.	Indeed,	preventing	or	treat-
ing	consequences	of	undesired	immune	responses,	
such	as	allergic	responses	or	chronic	inflammatory	
diseases,	 are	 other	 health	 benefits	 of	 prebiotics	
(75-77).	There	is	a	wide	variety	of	immune	mark-
ers	reflecting	body	resistance	to	infection,	and	pre-
biotics	were	discovered	to	play	a	more	prominent	
role	 in	certain	 types	of	 infections	or	other	health	
problems	 (77,	 78).	However,	 it	 is	 clear	 that	 pre-
biotics	can	modulate	certain	parts	of	the	immune	
system.	
	 Several	 studies	 in	 gnotobiotic	 animals	
have	demonstrated	that	the	microbiota	is	essential	
for	an	optimal	 structural	and	 functional	develop-
ment	of	 the	 immune	system,	whereas	microbiota	
could	 be	 boosted	 and	 strengthened	 by	 prebiotics	
(79-82).	 The	 collaborative	 effects	 of	 microbiota	
beside	 the	 immune	 system	 in	 the	 intestinal	 tract	
(gut-associated	 lymphoid	 tissue)	 have	 gone	 for-
ward	to	provide	optimal	defense	against	intestinal	
pathogens	(83,	84).	On	the	other	hand,	microbial	
products	 such	 as	 short	 chain	 fatty	 acids	 (SCFA)	
may	 interact	with	 immune	 cells	 and	 enterocytes,	
and	modify	their	activity	(69,	85).
	 G-protein-coupled	 receptors	 (GPR)	 41	
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and	 GPR	 43	 expressed	 on	 leukocytes	 especially	
polymorphonuclear	cells	as	well	as	on	enterocytes	
and	enteroendocrine	cells	in	the	human	colon	(86,	
87)	are	diagnosed	as	receptors	for	SCFA	(87,	88).	
SCFA	indeed,	modulate	chemokine	expression	in	
the	intestinal	epithelial	cells	(89).

4. Conclusion
	 In	 summary,	 there	 are	 traditional	 and	 in-
dustrial	methods	for	production	of	different	prebi-
otics	with	determined	health	benefits.	Conceivable	
mechanisms	 for	 the	 health	 benefits	 of	 prebiotics	

are	suggested	for	example	modulation	of	immune	
system.	The	unreachability	of	the	immune	system	
of	the	GI	tract	confounds	the	investigation	in	this	
area,	and	most	human	studies	rely	on	the	measure-
ment of ex vivo	systemic	immune	markers,	demon-
strating	the	overall	resistance	to	infections	and	dis-
orders.	However,	prebiotics	with	acceptable	health	
outcomes	are	dealt	with	high	output	commercially	
and	industrial	methods	of	production.
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