
Trends in Pharmaceutical Sciences 2020: 6(2).

TIPS...................................
Methylene Blue Improves Mitochondrial Function in The Liver of  
Cholestatic Rats

Asrin Ahmadi1,3, Mohammad Mehdi Ommati2, Hossein Niknahad1,3,*, Reza Heidari1,*

1Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz Iran.
2College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, Peoples’ Republic of China.
3Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences,  

Shiraz Iran.

Trends in Pharmaceutical Sciences 2020: 6(2): 73-86.

.................................................................................................................................
Abstract
	 Different	diseases	or	xenobiotics	could	cause	cholestasis.	The	only	promising	treatment	for	this	
disease	is	the	identification	of	its	etiology	or	liver	transplantation	in	severe	cases.	Nevertheless,	preserving	
liver	function	could	delay	organ	injury	or	help	to	the	treatment	of	the	disease	in	mild	cases.	The	mechanism	
of	cholestasis-induced	liver	injury	is	multifactorial.	However,	it	has	been	found	that	hepatocyte	mitochon-
drial	function	is	impaired	in	this	disease.	Methylene	blue	(MB)	is	a	phenothiazine	compound.	MB	is	phar-
macologically	used	for	a	wide	range	of	diseases.	It	has	been	found	that	this	compound	could	significantly	
improve	mitochondrial	function	and	prevent	the	releases	of	cell	death	mediators	from	this	organelle.	MB	
is	also	well-known	for	its	preventing	effect	on	mitochondria-facilitating	reactive	oxygen	species	(ROS)	
formation.	It	has	been	found	that	mitochondrial	function	is	impaired	in	the	liver	tissue	in	different	models	
of	cholestasis.	The	current	study	aimed	to	evaluate	the	effects	of	MB	administration	on	mitochondrial	indi-
ces	in	cholestatic	animals.	Rats	underwent	bile	duct	ligation	(BDL)	surgery	and	treated	with	MB	(0.5	and	
1	mg/kg,	oral).	Significant	mitochondrial	permeabilization,	mitochondrial	membrane	depolarization,	lipid	
peroxidation,	decreased	mitochondrial	dehydrogenase	activity,	and	depleted	ATP	content	was	evident	in	
BDL	rats.	It	was	found	that	mitochondrial	indices	improved	in	MB-treated	cholestatic	animals.	Based	on	
the	data	collected	in	this	study,	MB	might	be	useful	as	a	therapeutic	agent	in	cholestasis.	The	mitochondria	
protecting	properties	of	this	compound	could	play	a	major	role	in	its	mechanism	of	action.
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1. Introduction
	 Cholestasis	 could	 develop	with	 a	 variety	
of	etiologies.	Drugs	and	xenobiotics,	alcoholism,	
and	infectious	liver	disease	could	cause	cholesta-
sis	(1,	2).	Un-treated	cholestasis	could	lead	to	liver	
fibrosis/cirrhosis	 and,	 finally,	 multiorgan	 failure	
(1,	2).	When	cholestasis	occurred,	the	bile	compo-
nents	are	accumulated	 in	 the	 liver	 tissue.	Hydro-
phobic	bile	acids	and	bilirubin	are	major	bile	con-

stituents	 identified	 to	be	 responsible	 for	 the	 liver	
injury	during	cholestasis	(3-10).
	 Different	 mechanisms,	 including	 the	 in-
duction	of	severe	oxidative	stress,	have	been	docu-
mented	in	the	liver	of	experimental	animal	models	
or	human	cases	of	cholestasis	 (5,	9,	11-13).	Dis-
ruption	of	various	cellular	 targets,	 including	bio-
membrane	lipids,	DNA,	proteins,	as	well	as	vital	
organelles	 such	 as	 endoplasmic	 reticulum	 (ER)	
and	mitochondria,	 could	 be	 affected	 in	 cholesta-
sis	(14-17).	Several	investigations	tried	to	mitigate	
cholestasis-induced	liver	injury	by	the	administra-
tion	 of	 antioxidants	 (16,	 18-24).	The	 ideal	 treat-
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ment	for	cholestasis	is	the	elimination	of	the	cause	
of	cholestasis.	However,	adjuvant	therapies	might	
protect	the	liver	or	delay	their	damage.	Although	
antioxidants	revealed	significant	protective	effects	
against	 cholestasis,	 these	 agents	 have	 partial	 re-
sults,	perhaps	because	of	the	progressive	nature	of	
the	disease.
	 Another	 interesting	 mechanism	 of	 cho-
lestasis-induced	 liver	 injury	 is	 the	 involvement	
of	mitochondrial	impairment	in	this	complication	
(5-7,	25-29).	It	has	been	reported	that	hepatocytes	
ATP	 levels	 are	 depleted	 in	 cholestatic	 animals.	
Mitochondrial	 permeabilization	 decreased	 mito-
chondrial	dehydrogenases	activity,	and	mitochon-
drial	depolarization	is	also	documented	in	the	liver	
during	 cholestasis	 (5-7,	 25-29).	 Another	 critical	
point	 is	 the	 connection	 between	 mitochondrial	
impairment	 and	 cellular	 oxidative	 stress	 (30).	 It	
is	well-known	 that	 cellular	mitochondria	 are	 the	
primary	sources	of	cellular	ROS	(31,	32).	Hence,	
mitochondrial	impairment	in	the	liver	of	cholestat-
ic	animals	could	deteriorate	the	oxidative	stress	in	
this	organ.	It	also	has	been	documented	that	severe	
oxidative	stress	additionally	damages	the	cellular	
mitochondria,	and	this	vicious	cycle	finally	leads	
to	cell	death	and	organ	injury.
	 Methylene	blue	 (MB)	 is	 a	 phenothiazine	
compound	(Figure	1).	This	chemical	was	the	lead-
ing	 molecule	 for	 the	 discovery	 of	 antipsychotic	
drugs.	MB	is	widely	 investigated	for	 its	pharma-
cological	effects	for	more	than	100	years	(33).	The	
effects	of	MB	on	the	central	nervous	system	(CNS)	
diseases	such	as	Alzheimer's	are	the	most	impres-
sive	therapeutic	properties	of	this	compound	(34-
36).	MB	is	widely	investigated	in	CNS	disorders	
as	well	as	xenobiotics-induced	neurotoxicity	(37-
40).	However,	the	effect	of	this	compound	on	other	
complications	such	as	 liver	diseases,	 renal	disor-
ders,	 lung	 damage,	 and	 cardiovascular	 diseases	
also	has	been	investigated	(41-48).	MB	is	an	FDA-
approved	compound	for	methemoglobinemia	with	
different	etiologies	(33).
	 Effects	of	MB	on	mitochondrial	 function	
and	 regulation	 of	 mitochondria-mediated	 ROS	
formation	 is	one	of	 the	most	exciting	 features	of	
this	 compound	 (49).	 MB	 (The	 oxidized	 form)	
could	 accept	 an	 electron	 from	 the	 complex	 I	 of	
the	electron	transport	chain	(ETC)	(49).	Reduced	

MB	(MBH)	transfers	its	electron	to	cytochrome	c	
and	complex	IV	of	ETC	(49).	This	process	might	
decrease	mitochondria-facilitated	ROS	 formation	
(49).
	 As	mentioned,	mitochondrial	 impairment	
is	a	putative	mechanism	involved	in	the	pathogen-
esis	of	cholestasis-induced	liver	injury.	Therefore,	
in	the	current	study,	the	effects	of	MB	on	several	
mitochondrial	 indices	were	evaluated	in	 the	liver	
of	 cholestatic	 animals.	The	 results	might	 help	 to	
reveal	 the	 mechanism(s)	 of	 hepatoprotective	 ef-
fects	of	this	compound	and	its	potential	use	in	vari-
ous	liver	diseases.	

2. Material and Methods
2.1. Reagents
 	 N-chloro	 tosylamide	 (Chloramine-T),	
trichloroacetic	 acid	 (TCA),	 sodium	 acetate,	 cit-
ric	 acid,	 n-Propanol,	 p-Dimethyl	 amino	 benzal-
dehyde,	 methylene	 blue	 (3,7-bis(dimethylamino)
phenothiazine-5-ium,)	 dithiothreitol	 (DTT),	 su-
crose,	 2,4,6-Tri(2-pyridyl)-s-triazine	 (TPTZ),	
thiobarbituric	 acid	 (TBA),	 dimethyl	 sulfoxide,	
acetonitrile	HPLC	grade,	methanol	HPLC	grade,	
sodium	 citrate,	 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium	 bromide	 (MTT),	 ethylenedi-
amine	tetra-acetic	acid	(EDTA),	phosphoric	acid,	
2	 amino	 2-hydroxymethyl-propane-1,3-diol-Hy-
drochloride	(Tris-HCl),	were	obtained	from	Mer-
ck	 (Darmstadt,	Germany).	Aspartate	 aminotrans-
ferase	 (AST),	 alanine	 aminotransferase	 (ALT),	
alkaline	 phosphatase	 (ALP),	 lactate	 dehydroge-
nase	(LDH),	γ-glutamyl	transferase	(γ-GT),	albu-
min,	 and	 bilirubin	 kits	 were	 obtained	 from	 Pars	
Azmoon®	(Tehran,	Iran).	All	salts	used	for	mak-
ing	buffer	solutions	were	of	analytical	grade	and	
obtained	from	Merck	(Darmstadt,	Germany).

2.2. Animals
 Male	 Sprague-Dawley	 rats	 (n=60;	 200-
250	g	weight)	were	obtained	from	the	Shiraz	Uni-
versity	of	Medical	Sciences,	Shiraz,	Iran.	Animals	
were	housed	 in	 a	 standard	 environment	 (temper-
ature	of	23±1	 ºC	and	a	12L:	12D	photoschedule	
along	with	a	40	%	of	relative	humidity).	The	rats	
were	 allowed	 free	 access	 to	 a	 regular	 standard	
RoyanFeed®	 (Isfahan,	 Iran)	 rodents	 chow	 diet	
and	 tap	water.	All	 the	 experiments	were	 done	 in	
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compliance	with	the	guidelines	for	care	and	use	of	
experimental	animals	approved	by	an	ethics	com-
mittee	 at	Shiraz	University	 of	Medical	Sciences,	
Shiraz,	Iran	(#1396-01-36-14807).

2.3. Surgery
 Animals	were	anesthetized	 (10	mg/kg	of	
xylazine	and	70	mg/kg	of	ketamine,	i.p).	A	midline	
incision	 through	 the	 linea	 alba	was	made.	Then,	
the	common	bile	duct	was	localized,	doubly	ligat-
ed,	and	cut	between	these	two	ligatures	(50).	The	
sham	operation	consisted	of	 laparotomy	and	bile	
duct	identification	and	manipulation	without	liga-
tion.	

2.4. Experimental setup
 Animals	 were	 equally	 allotted	 into	 five	
groups	(n=8	/group).	The	treatments	were	as	fol-
lows:	
1)	Sham-operated	(Vehicle-treated);	
2)	BDL;
3)	BDL+Methylene	blue	(0.5	mg/kg,	oral,	for	sev-
en	consecutive	days);
and	4)	BDL+Methylene	 blue	 (1	mg/kg,	 oral,	 for	
seven	 consecutive	 days).	 Cholestasis-associated	
hepatic	injury	was	assessed	seven	days	after	BDL	
surgery	(50,	51).

2.5. Serum biochemistry
 A	 Mindray	 BS-200®	 auto	 analyzer	 and	
Standard	kits	(Pars	Azmoon®,	Tehran,	Iran)	were	
used	 to	 measure	 serum	 alanine	 aminotransfer-
ase	 (ALT),	 aspartate	 aminotransferase	 (AST),	 
lactate	 dehydrogenase	 (LDH),	 alkaline	 phospha-
tase	 (ALP),	 gamma-glutamyl	 transpeptidase	 (γ-
GT),	 bilirubin,	 blood	 urea	 nitrogen	 (BUN),	 and	
creatinine	(Cr)	(52).	

2.6. Organ weight index 
 Animals	 and	 their	 organs	 (liver,	 spleen,	
and	kidney)	were	weighed,	and	the	weight	 index	
was	measured	as	Organ	weight	index=[Wet	organ	
weight	(g)/Body	weight	(g)]×100.	

2.7. Isolation of the liver mitochondria
 Mice	liver	mitochondria	were	 isolated	as	
previously	 described	 (53).	 Briefly,	 animals	 were	
anesthetized	(Thiopental	80	mg/kg,	i.p),	and	their	

liver	was	excised	and	washed	with	ice-cold	saline	
(4oC,	 sodium	 chloride	 0.9%)	 (53,	 54).	The	 liver	
was	 homogenized	 with	 an	 Ultra-Turrax®	 Tube	
(IKA)	homogenizer	(8000	rpm,	10	sec),	 in	 isola-
tion	 buffer	 (220	 mM	 mannitol,	 0.5	 mM	 EGTA,	 
70	mM	sucrose,	2	mM	HEPES,	0.1%	bovine	serum	
albumin,	and	pH=7.4)	at	a	10:1	buffer	to	liver	(v:	
w)	ratio	(53,	55).	Afterward,	the	liver	homogenate	
was	centrifuged	at	1,000×g	for	20	minutes	at	4oC	
to	remove	intact	cells	and	nuclei.	The	supernatants	
were	further	centrifuged	(15,000×g,	4	°C,	20	min-
utes)	to	precipitate	the	heavy	membrane	fractions	
(mitochondria)	(56,	57).	The	second	centrifugation	
step	was	repeated	at	least	three	times	using	a	fresh	
buffer	medium.	All	manipulations	 for	 liver	mito-
chondria	 isolation	were	performed	at	4	 °C	or	on	
ice	to	minimize	mitochondrial	injury	(53,	58).

2.8. Mitochondrial ATP levels
 Based	on	a	previously	 reported	protocol,	
mitochondrial	ATP	level	was	assessed	by	an	HPLC	
method	(55,	59).	Briefly,	isolated	mitochondria	(1	
mg	 protein/mL)	 were	 treated	 with	 100	 µL	 ice-
cooled	phosphoric	acid	(50	%	w:	v,	4	ºC)	and	cen-
trifuged	(30	min,	17,000	g,	4	ºC).	Afterward,	 the	
supernatant	 (100	µL)	was	 treated	with	 15	µL	 of	
ice-cooled	 1	M	KOH	 solution.	 Samples	 (25	µL)	
were	injected	into	an	HPLC	system	consisted	of	an	
LC-18	column	(25	cm,	µ-Bondapak).	The	mobile	
phase	was	composed	of	phosphate	buffer	(100	mM	
KH2PO4,	pH=7	adjusted	with	KOH),	acetonitrile	
(2.5	%	v:	v),	and	1	mM	tetrabutylammonium	hy-
droxide	(55).	The	flow	rate	was	1	mL/min,	and	the	
UV	detector	was	set	at	λ=254	nm	(55,	59).

2.9. Lipid peroxidation in kidney mitochondria
 Thiobarbituric	 acid-reactive	 substances	
(TBARS)	were	measured	in	isolated	mitochondria	
(8,	 57).	 Previous	 studies	mentioned	 that	 sucrose	
interferes	with	 the	 lipid	 peroxidation	 test	 in	 iso-
lated	 mitochondria	 preparations	 (53).	 Therefore,	
mitochondria	 preparations	were	washed	once	 (to	
remove	sucrose).	For	this	purpose,	isolated	mito-
chondria	 were	 suspended	 in	 5	mL	 of	 ice-cooled	
MOPS-KCl	buffer	(50	mM	MOPS,	100	mM	KCl,	
4	 ºC,	pH=7.4).	Then,	 isolated	mitochondria	were	
centrifuged	(17,000	g,	15	min,	4	ºC),	and	the	pellet	
was	 re-suspended	 in	MOPS-KCl	buffer	and	used	
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for	TBARs	assay	(53,	60).	The	mitochondrial	sus-
pension	(1	mg	protein/mL)	was	mixed	with	1	mL	
of	a	solution	containing	trichloroacetic	acid	(15	%	
w:	v),	HCl	(0.24	N),	thiobarbituric	acid	(0.375	%	
w:	v),	and	Trolox	(500	µM).	Samples	were	heated	
for	15	min	at	100	ºC	(53).	Then	1	mL	of	n-butanol	
was	 added	 and	 vortexed	 (5	min).	 Samples	 were	
centrifuged	 (17,000	 g,	 10	 min),	 and	 the	 absor-
bance	of	the	upper	phase	was	measured	(EPOCH	
plate	reader,	BioTek®	Instruments,	Highland	Park,	
USA,	λ=532	nm)	(53).

2.10. Mitochondrial depolarization
 Mitochondrial	uptake	of	 the	cationic	dye	
rhodamine	123	was	applied	for	 the	evaluation	of	
mitochondrial	depolarization	(61-65).	Rhodamine	
123	accumulates	in	the	mitochondrial	matrix	by	fa-
cilitated	diffusion	(61-63).	When	the	mitochondri-
on	is	depolarized,	there	is	no	facilitated	diffusion.	
Therefore,	 the	 amount	 of	 rhodamine	 123	 in	 the	
supernatant	will	be	increased.	In	the	current	inves-
tigation,	the	mitochondrial	fractions	(0.5	mg	pro-
tein/mL;	 in	 the	depolarization	assay	buffer)	were	
incubated	with	10	µM	of	rhodamine	123	(15	min,	
37	ºC,	in	the	dark).	Afterward,	samples	were	cen-
trifuged	(15,000	g,	10	min,	4	ºC),	and	the	fluores-
cence	intensity	of	 the	supernatant	was	monitored	
(FLUOstar	 Omega®;	 multifunctional	 microplate	
reader;	 BMG	 Labtech,	 Germany;	 λexcitation=485	
nm	and	λemission=525	nm)	(61,	66,	67).

2.11. Mitochondrial permeabilization and swelling 
 Mitochondrial	 permeabilization	 was	 as-
sessed	by	monitoring	the	changes	in	optical	den-
sity	at	λ=540	nm	(53,	68).	Briefly,	 isolated	mito-
chondria	 (0.5	mg	 protein/ml)	were	 suspended	 in	
swelling	buffer	(65	mM	KCl,	10	mM	HEPES,	125	
mM	sucrose,	pH=7.2).	The	absorbance	was	moni-
tored	(25	°C,	during	30	min	of	incubation),	using	
an	 EPOCH	 plate	 reader	 (Bio-Tek®	 Instruments,	
Highland	Park,	USA)	(69,	70).	A	decrease	in	ab-
sorbance	 is	 connected	 with	 an	 increase	 in	mito-
chondrial	permeabilization.	The	results	are	report-
ed	as	maximal	mitochondrial	 swelling	amplitude	
(ΔOD	540	nm)	(53,	67,	71).

2.12. Liver mitochondrial dehydrogenases activity
 The	 3-(4,	 5-dimethylthiazol-2-yl)-2,	 the	

5-diphenyltetrazolium	bromide	(MTT)	assay	was	
applied	 as	 a	 colorimetric	method	 for	 the	 estima-
tion	 of	mitochondrial	 dehydrogenases	 activity	 in	
isolated	 mice	 liver	 mitochondria	 (72-76).	 Mito-
chondrial	 suspension	 in	 a	 buffer	 containing	 0.32	
M	sucrose,	1	mM	EDTA,	and	10	mM	Tris-HCl,	pH	
7.4,	was	incubated	with	0.4%	of	MTT	at	37	°C	for	
30	minutes	(77).	The	product	of	purple	formazan	
crystals	was	dissolved	 in	1	mL	of	dimethyl	 sulf-
oxide.	Then,	 100	 µL	 of	 dissolved	 formazan	was	
added	 to	 a	96-well	 plate,	 and	 the	optical	 density	
at	λ=570	nm	was	measured	(EPOCH	plate	reader;	
BioTek	Instruments,	Highland	Park,	USA).	Sam-
ples	 protein	 concentrations	 were	 determined	 by	
the	Bradford	method	(78-80).

2.13. Statistical analysis
 Data	are	given	as	mean±SD.	A	compari-
son	 of	 data	 sets	 was	 performed	 by	 the	 one-way	
analysis	of	variance	(ANOVA)	with	Tukey’s	mul-
tiple	 comparisons	 as	 the	post	 hoc	 test.	Values	of	
P<0.05	were	considered	significant.

3. Results
 Significant	 elevation	 in	 the	 serum	 bio-
chemical	markers	of	liver	and	bile	duct	injury,	in-
cluding	ALT,	ALP,	γ-GT,	bilirubin,	AST,	and	LDH	
were	detected	in	the	rat	model	of	cholestasis	(Table	
1).	On	the	other	hand,	signs	of	hepatomegaly	and	
splenomegaly	were	evident	in	the	cholestatic	ani-
mals	(Figure	2).	These	data	confirm	the	cholestasis	
induction	in	our	model.	It	was	found	that	the	MB	
administration	significantly	mitigated	splenomeg-
aly	and	hepatomegaly	in	BDL	rats	(Figure	2).	The	
effects	of	MB	on	these	markers	were	not	dose-de-
pendent.	MB	treatment	also	mitigated	markers	of	
liver	injury	in	cholestatic	animals	(Table	1).
	 It	was	 found	 that	mitochondrial	 function	
was	 interrupted	 in	 the	 liver	 tissue	 of	 cholestatic	
animals	(Figure	3).	Severe	decrease	in	mitochon-
drial	dehydrogenases	activity,	mitochondrial	depo-
larization,	 decreased	mitochondrial	ATP	 content,	
mitochondrial	 permeabilization,	 and	 increase	 in	
mitochondrial	lipid	peroxidation	were	detected	in	
mitochondria	isolated	from	the	liver	of	cholestatic	
animals	(Figure	3).	It	was	found	that	MB	adminis-
tration	in	both	doses	(0.5	and	1	mg/kg)	significant-
ly	improved	mitochondrial	indices	of	functionality	
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in	the	liver	mitochondria	of	cholestatic	rats	(Figure	
3).	The	effects	of	MB	on	mitochondrial	 function	
was	not	dose-dependent	in	most	parameters	evalu-
ated	in	the	current	study	(Figure	3).

4. Discussion
 Cholestasis	 is	 a	 clinical	 complication	
which	could	be	 induced	by	various	etiologies	(1,	
2).	Severe	and	untreated	cholestasis	could	lead	to	
cirrhosis	and	liver	failure.	Oxidative	stress	and	its	

Table	1.	Serum	biochemical	measurements	in	cholestatic	rats.
Parameters assessed Sham BDL BDL+MB 0.5 mg/kg BDL + MB 1 mg/kg

ALT	(U/l) 45±7 300±25 148±23a 114±11a

AST	(U/l) 80±14 206±19* 126±6 107±11a

LDH	(U/l) 587±31 2610±215* 1400±220a 1000±90a

ALP	(U/l) 1183±53 3343±309* 2887±532 2721±339	
γ-GT	(U/l) 22±7 308±60* 284±47 234±74

Total bilirubin	(mg/dl) 0.1±0.05 8.5±2* 11±3 8±3
Data	are	given	as	mean±SD	(n=8).	MB:	Methylene	blue;	BDL:	Bile	duct	ligation. 
*Indicates	significantly	different	as	compared	with	the	sham	group	(P<0.001). 
aIndicates	significantly	different	as	compared	with	the	BDL	group	(P<0.05).

 
Figure	1.	Methylene	blue	and	azure	B	as	its	de-methylated	metabolite.	Azure	B	seems	to	be	responsible	for	
some	pharmacological	effects	of	MB.
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Figure	2.	Organ	weight	indices	in	cholestatic	rats.	MB:	Methylene	blue;	DL:	Bile	duct	ligated.
Data	are	given	as	mean±SD	(n=8).
***Indicate	significantly	different	as	compared	with	the	BDL	group	(P<0.001).	
ns:	not	statistically	significant.
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associated	 events	 could	 play	 an	 essential	 role	 in	
cholestasis	with	different	etiologies	(5,	9,	11,	12).	
Although	 there	 are	 no	 specific	 sources	 for	 ROS	
and	oxidative	 stress	 in	cholestasis,	 cellular	mito-
chondria	seem	to	play	a	role	in	this	complication	
(3,	6,	7,	9,	16,	17,	81,	82).	Hence,	agents	that	af-
fect	mitochondria-born	ROS	might	influence	liver	
injury	during	 cholestasis.	MB	 is	 a	mitochondrial	
active	agent	that,	at	low	concentrations,	could	reg-
ulate	mitochondria-facilitated	ROS	formation.	
	 Although	no	adverse	effects	of	MB	have	

been	reported	has	been	reported	in	humans	(≈300	
mg/day)	(33,	83).		The	beneficial	effects	of	MB	are	
provided	 at	 low	doses	 of	 this	 compound	 (Figure	
4)	 (49,	 84).	High	 doses	 of	MB	 not	 only	 are	 not	
helpful	but	also	might	deteriorate	cell	function	by	
inhibiting	 vital	 enzymes	 as	well	 as	 severely	 im-
pairing	mitochondrial	function	(84).	The	effects	of	
MB	on	liver	function	and	histopathological	altera-
tion	also	has	been	previously	reported	by	Aksu	et 
al.	 (85).	The	authors	 revealed	 that	MB	treatment	
decreased	 ROS	 formation	 and	 liver	 histopatho-
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Figure	3.	Evidence	of	improvement	in	liver	mitochondrial	indices	in	bile	duct	ligated	(BDL)	rats	treated	
with	methylene	blue	(MB).	ATP:	Adenosine	triphosphate;	TBARS:	Thiobarbituric	acid	reactive	substances.
Data	are	given	as	mean±SD	(n=8).
Asterisks	indicate	significantly	different	as	compared	with	the	BDL	group	(**P<0.01,	***P<0.001).	
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logical	changes	and	fibrosis	(85).	However,	there	
is	no	molecular	mechanism	for	the	source	of	ROS	
or	the	role	of	mitochondria	in	their	investigation.	
In	the	current	study,	we	evaluated	the	effect	of	MB	
on	hepatocyte	mitochondria	as	its	primary	site	of	
action.
	 The	antioxidant	activity	of	MB	seems	 to	
be	 mediated	 through	 interaction	 with	 the	 mito-
chondrial	electron	transport	chain	(Figure	4)	(49).	
The	 cycling	 between	 the	 oxidized	 and	 reduced	
forms	of	MB	plays	a	vital	role	in	its	mitochondria	
regulatory	properties	(Figure	4).	It	has	been	found	
that	 a	Flavin-dependent	 enzyme	 in	 complex	 I	 of	
the	mitochondrial	electron	 transport	chain	 (ETC)	
use	NADH	to	reduce	oxidized	MB	to	reduced	MB	
(leucomethylene	blue;	MBH2)	(Figure	4)	(49).	On	
the	other	hand,	cytochrome	c	and	complex	IV	of	
ETC	 deoxidizes	 MBH2	 to	 MB	 (Figure	 4)	 (49).	
Therefore,	electron	 transport	 through	ETC	is	by-
passed.	ETC	is	a	significant	source	of	ROS.	Hence,	
this	could	be	one	of	 the	primary	mechanisms	for	
the	positive	effects	of	low	concentrations	of	MB	in	

mitochondria.	On	the	other	hand,	some	investiga-
tions	mentioned	 that	MB	could	play	an	essential	
role	in	mitochondrial	biogenesis	(86).	This	process	
improves	 mitochondrial	 energy	 metabolism	 and	
will	decrease	ROS	produced	by	damaged	and	old	
mitochondria	(86).
	 Interestingly,	 it	 has	 also	 been	 found	 that	
MB	 could	 enhance	 cellular	 antioxidant	 defense	
mechanisms	through	the	activation	of	the	nuclear	
factor	erythroid-2-related	factor	2	(	(Nrf2)	signal-
ing	pathway	(86).	Nrf2	is	responsible	for	 the	ex-
pression	 of	 different	 cellular	 antioxidant	 defense	
enzymes.	Hence,	MB	boosts	 cellular	 antioxidant	
defense	mechanisms.
	 As	 previously	 mentioned,	 the	 effects	 of	
MB	 on	 mitochondrial	 function	 are	 restrictedly	
dose-dependent	(87).	Visarius	et al.	 reported	 that	
increasing	concentrations	of	MB	provoked	mito-
chondrial	 impairment	 and	 severe	 mitochondrial	
permeabilization	(87).	On	the	other	hand,	low	con-
centrations	of	this	chemical	(e.g.,	0.5,	1,	and	5	µM)	
stimulated	mitochondrial	respiration	and	enhanced	

 

Figure	4. Schematic	representation	of	the	possible	effects	of	methylene	blue	for	the	enhancement	of	mitochondrial	
function.	Low	concentrations	of	methylene	blue	(MB;	0.5,	1,	and	5	µM)	could	directly	transfer	electron	(e-)	from	
complex	I	of	electron	transport	chain	(ETC)	to	cytochrome	c	and	complex	IV.	Therefore,	this	mechanism	bypasses	
ETC-facilitated	reactive	oxygen	species	(ROS)	production	by	ETC	(e.g.,	by	complex	II).	It	has	been	found	that	higher	
MB	concentrations	(e.g.,	>5	µM)	deteriorate	mitochondrial	function	by	enhancing	mitochondrial	permeabilization	
and	a	significant	decrease	in	ATP	production.	Q:	Co-enzyme	Q;	FMNH:	Flavin	mononucleotide.	This	schematic	rep-
resentation	was	inspired	by,	and	draw	based	on	the	mechanism	of	MB	action	in	cellular	mitochondria	represented	in	
the	manuscript:	Methylene	blue	delays	cellular	senescence	and	enhances	key	mitochondrial	biochemical	pathways.	
DOI:	10.1096/fj.07-9610com
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