Emerging technology trends in regulatory approvals of cancer immunotherapy drugs by the FDA and EMA

Document Type : Review Article

Authors

1 Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran

10.30476/tips.2024.102243.1232

Abstract

Immunotherapy is an emerging field in medicine using the body's immune to combat various diseases, particularly cancer. In recent years, several immunotherapy agents have obtained regulatory approval from the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA) for the management of different types of neoplasms. Notable developments include approvals for bispecific antibodies, antibody-drug conjugates, checkpoint inhibitors, and CAR T-cell therapies. They work by stimulating the immune system, suppressing the pathways that support cancer cells in evading immune system detection, or introducing genetically engineered immune cells to target specific antigens on cancer cells. These agents have demonstrated remarkable safety and efficacy in various clinical trials, targeting different mechanisms of action, indications, and patient populations. This article presents a thorough overview of the recent immunotherapy approvals granted by the FDA and the EMA, highlighting their mechanisms of action, indications, and clinical evidence. Overall, the recent approvals constitute a remarkable achievement in the advancement of novel and efficacious cancer therapies that can enhance patient outcomes and quality of life.

Highlights

Maryam Monajati (Google Scholar)

Ali Mohammad Tamaddon (Google Scholar)

Samira Sadat Abolmaali (Google Scholar)

Keywords


1.    Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, et al. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 2023 Sep 4;14(9):587. doi: 10.1038/s41419-023-06110-6.
2.    Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther. 2020 Aug 25;5(1):166. doi: 10.1038/s41392-020-00280-x. 
3.    Tiwari A, Trivedi R, Lin SY. Tumor microenvironment: barrier or opportunity towards effective cancer therapy. J Biomed Sci. 2022 Oct 17;29(1):83. doi: 10.1186/s12929-022-00866-3. 
4.    Hamdan F, Cerullo V. Cancer immunotherapies: A hope for the uncurable? Front Mol Med. 2023 Feb 17;3:1140977. doi: 10.3389/fmmed.2023.1140977. 
5.    Peterson C, Denlinger N, Yang Y. Recent Advances and Challenges in Cancer Immunotherapy. Cancers (Basel). 2022 Aug 17;14(16):3972. doi: 10.3390/cancers14163972. 
6.    Kaplon H, Chenoweth A, Crescioli S, Reichert JM. Antibodies to watch in 2022. MAbs. 2022 Jan-Dec;14(1):2014296. doi: 10.1080/19420862.2021.2014296. 
7.    Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM. Antibodies to watch in 2023. MAbs. 2023 Jan-Dec;15(1):2153410. doi: 10.1080/19420862.2022.2153410. 
8.    Brandsma AM, Jacobino SR, Meyer S, ten Broeke T, Leusen JH. Fc receptor inside-out signaling and possible impact on antibody therapy. Immunol Rev. 2015 Nov;268(1):74-87. doi: 10.1111/imr.12332. PMID: 26497514.
9.    Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol. 2009 Dec;20(6):685-91. doi: 10.1016/j.copbio.2009.10.011. Epub 2009 Nov 4. 
10.    Liu C, Yang M, Zhang D, Chen M, Zhu D. Clinical cancer immunotherapy: Current progress and prospects. Front Immunol. 2022 Oct 11;13:961805. doi: 10.3389/fimmu.2022.961805. 
11.    Wei G, Wang J, Huang H, Zhao Y. Novel immunotherapies for adult patients with B-lineage acute lymphoblastic leukemia. J Hematol Oncol. 2017 Aug 18;10(1):150. doi: 10.1186/s13045-017-0516-x. 
12.    Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12293-7. doi: 10.1073/pnas.192461099. 
13.    Alturki NA. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J Clin Med. 2023 Jun 27;12(13):4301. doi: 10.3390/jcm12134301. 
14.    Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am J Clin Oncol. 2016 Feb;39(1):98-106. doi: 10.1097/COC.0000000000000239. 
15.    Keam SJ. Tremelimumab: First Approval. Drugs. 2023 Jan;83(1):93-102. doi: 10.1007/s40265-022-01827-8. PMID: 36571670.
16.    Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002 Aug;8(8):793-800. doi: 10.1038/nm730. 
17.    Markham A. Dostarlimab: First Approval. Drugs. 2021 Jul;81(10):1213-1219. doi: 10.1007/s40265-021-01539-5. PMID: 34106455.
18.    Ema. Jemperli - European Medicines Agency. European Medicines Agency. 2021.
19.    Koyama S, Akbay EA, Li YY, Herter-Sprie GS, Buczkowski KA, Richards WG, et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun. 2016 Feb 17;7:10501. doi: 10.1038/ncomms10501. 
20.    Ema. Opdualag. European Medicines Agency. 2022.
21.    Research CfDEa. FDA D.I.S.C.O.: Burst Edition: FDA approvals of Opdualag (nivolumab and relatlimab-rmbw) for unresectable or metastatic melanoma, and Keytruda (pembrolizumab) for patients with advanced endometrial carcinoma. FDA. 2022.
22.    Fan G, Wang Z, Hao M, Li J. Bispecific antibodies and their applications. J Hematol Oncol. 2015 Dec 21;8:130. doi: 10.1186/s13045-015-0227-0. 
23.    Kontermann RE, Brinkmann U. Bispecific antibodies. Drug Discov Today. 2015 Jul;20(7):838-47. doi: 10.1016/j.drudis.2015.02.008. 
24.    Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, Huang Y, Xu Y, Qian C. Bispecific Antibodies: From Research to Clinical Application. Front Immunol. 2021 May 5;12:626616. doi: 10.3389/fimmu.2021.626616. 
25.    Khosla AA, Jatwani K, Singh R, Reddy A, Jaiyesimi I, Desai A. Bispecific Antibodies in Lung Cancer: A State-of-the-Art Review. Pharmaceuticals (Basel). 2023 Oct 14;16(10):1461. doi: 10.3390/ph16101461. 
26.    Shah V, McNatty A, Simpson L, Ofori H, Raheem F. Amivantamab-Vmjw: A Novel Treatment for Patients with NSCLC Harboring EGFR Exon 20 Insertion Mutation after Progression on Platinum-Based Chemotherapy. Biomedicines. 2023 Mar 20;11(3):950. doi: 10.3390/biomedicines11030950. 
27.    Dhillon S. Tebentafusp: First Approval. Drugs. 2022 Apr;82(6):703-710. doi: 10.1007/s40265-022-01704-4. 
28.    Ema. Kimmtrak - European Medicines Agency. European Medicines Agency. 2022.
29.    Kang C. Teclistamab: First Approval. Drugs. 2022 Nov;82(16):1613-1619. doi: 10.1007/s40265-022-01793-1. 
30.    Research CfDEa. FDA approves teclistamab-cqyv for relapsed or refractory multiple myeloma. FDA. 2022.
31.    Kang C. Mosunetuzumab: First Approval. Drugs. 2022 Jul;82(11):1229-1234. 
32.    Research CfDEa. FDA grants accelerated approval to mosunetuzumab-axgb for relapsed or refractory follicular lymphoma. FDA. 2023.
33.    Gogia P, Ashraf H, Bhasin S, Xu Y. Antibody-Drug Conjugates: A Review of Approved Drugs and Their Clinical Level of Evidence. Cancers (Basel). 2023 Jul 30;15(15):3886. doi: 10.3390/cancers15153886. 
34.    Dumontet C, Reichert JM, Senter PD, Lambert JM, Beck A. Antibody-drug conjugates come of age in oncology. Nat Rev Drug Discov. 2023 Aug;22(8):641-661. 
35.    Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel). 2020 Sep 14;13(9):245. doi: 10.3390/ph13090245. 
36.    Lee A. Loncastuximab Tesirine: First Approval. Drugs. 2021 Jul;81(10):1229-1233. doi: 10.1007/s40265-021-01550-w. PMID: 34143407.
37.    Research CfDEa. Drug Trials Snapshots: ZYNLONTA. FDA. 2023.
38.    Markham A. Tisotumab Vedotin: First Approval. Drugs. 2021 Dec;81(18):2141-2147. doi: 10.1007/s40265-021-01633-8. PMID: 34748188.
39.    Research CfDEa. FDA grants accelerated approval to tisotumab vedotin-tftv for recurrent or metastatic cervical cancer. FDA. 2021.
40.    Heo YA. Mirvetuximab Soravtansine: First Approval. Drugs. 2023 Feb;83(3):265-273. doi: 10.1007/s40265-023-01834-3. PMID: 36656533.
41.    Dilawari A, Shah M, Ison G, Gittleman H, Fiero MH, Shah A, et al. FDA Approval Summary: Mirvetuximab Soravtansine-Gynx for FRα-Positive, Platinum-Resistant Ovarian Cancer. Clin Cancer Res. 2023 Oct 2;29(19):3835-3840. doi: 10.1158/1078-0432.CCR-23-0991. 
42.    Ema. Padcev. European Medicines Agency. 2021.
43.    Commissioner Oot. FDA Approves Treatment for Rare Blood Disease. FDA. 2021.
44.    FDA. Drug Trials Snapshots: BESREMi 2023 [Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-besremi#:~:text=The%20FDA%20approved%20BESREMi%20based,efficacy%20study%20in%2051%20patients.
45.    Monajati M, Abolmaali SS, Tamaddon A. 2020 FDA/EMA approvals for new immunotherapy drug technologies and applications. Trends in Pharmaceutical Sciences. 2021;7(2):81-92.
46.    Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far. Nat Rev Clin Oncol. 2023 Jun;20(6):359-371. doi: 10.1038/s41571-023-00754-1. Epub 2023 Apr 13. PMID: 37055515; PMCID: PMC10100620.
47.    Research CfBEa. BREYANZI (lisocabtagene maraleucel). FDA. 2021.
48.    Shahryari A, Saghaeian Jazi M, Mohammadi S, Razavi Nikoo H, Nazari Z, Hosseini ES, et al. Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Front Genet. 2019 Sep 25;10:868. doi: 10.3389/fgene.2019.00868. 
49.    Research CfDEa. FDA approves lisocabtagene maraleucel for second-line treatment of large B-cell lymphoma. FDA. 2022.
50.    Cho SF, Anderson KC, Tai YT. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front Immunol. 2018 Aug 10;9:1821. doi: 10.3389/fimmu.2018.01821. 
51.    Sharma P, Kanapuru B, George B, Lin X, Xu Z, Bryan WW, et al. FDA Approval Summary: Idecabtagene Vicleucel for Relapsed or Refractory Multiple Myeloma. Clin Cancer Res. 2022 May 2;28(9):1759-1764. doi: 10.1158/1078-0432.CCR-21-3803. 
52.    Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr, et al. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity. 2016 Feb 16;44(2):380-90. 
53.    Chekol Abebe E, Yibeltal Shiferaw M, Tadele Admasu F, Asmamaw Dejenie T. Ciltacabtagene autoleucel: The second anti-BCMA CAR T-cell therapeutic armamentarium of relapsed or refractory multiple myeloma. Front Immunol. 2022 Sep 2;13:991092. doi: 10.3389/fimmu.2022.991092. 
54.    Research CfDEa. FDA D.I.S.C.O. Burst Edition: FDA approval of CARVYKTI (ciltacabtagene autoleucel) for the treatment of adult patients with relapsed or refractory multiple myeloma after four or more prior lines of therapy, including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 monoclonal antibody. FDA. 2022.