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Abstract
 Transdermal drug delivery (TDD) is an attractive approach to minimize the limitations encoun-
tered by other drug administration routes such as oral and parenteral. Apart from specialized devices fab-
ricated for modifying the barrier properties of the stratum corneum such as iontophoresis, sonophoresis 
and microneedles, there are several passive methods applied through physicochemical manipulations in 
drug formulation, including prodrugs, ion-pairs, supersaturated solutions, inclusion complexes, eutectic 
mixtures, ionic liquids and use of chemical penetration enhancers. More recently, colloidal carriers due to 
their small size, high specific surface area, unique structural and biochemical features, are suggested for the 
skin penetration enhancement through transcellular or shunt routes. This review considers challenges and 
achievements of colloidal TDD systems, either used alone or in combination with other techniques, with 
a special concern about lipid-based vesicular nanocarriers including liposomes, niosomes, transfersomes, 
pharmacosomes, ethosomes, catesomes, and invasomes.
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1. Introduction
 Transdermal drug delivery (TDD) has 
been evolved as an attractive and patient accept-
able drug delivery method that can minimize the 
limitations associated with oral and intravenous 
administration routes (1). TDD involves an exten-
sive range of non-invasive or minimally invasive 
approaches for delivering drugs and vaccines into 
or through the skin (2). The main advantages of  
this route include avoiding hepatic first pass effect, 
uniform plasma levels, longer duration of action, 
reduction of side effects and easy termination of 
therapy (3). Lipophilic potent drugs with molecu-

lar weight less than 500 Da are ideal candidates 
for TDD, so the stratum corneum (SC) acts as the 
main physical barrier to transport of such drugs 
(4).
 Over last decades, numerous researches 
have been done in order to overcome the skin bar-
rier property though disrupting highly organized 
lipid structure by using of special chemicals (for-
mulation modification) or physical (device) tech-
niques. Based on whether an external source of 
energy is used for skin permeation enhancement or 
not, the presented techniques are divided into pas-
sive and active methods (2, 5). Passive techniques 
involves the effects of drug and vehicle interac-
tions on skin barrier function (6, 7). It is generally 
believed that the passive methods do not greatly 
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increase the permeation of drugs, so the amount 
of delivered drug is still limited. Moreover, there 
is a delay in drug action due to the lag time re-
quired for drug molecules to reach into the blood 
circulation. In contrast, active methods offer more 
controls over the delivery profile and can provide 
rapid onset of drug action (2, 8). 
 Many drug molecules are unable to pen-
etrate SC due to inappropriate physicochemical 
properties such as unfavorable partition coefficient 
and poor solubility. Therefore, several techniques 
have been introduced for passive enhancement of 
the skin permeation. For pharmaceutical semisolid 
and liquid formulations, enhancement in TDD can 
be achieved by either conventional (non-colloidal) 
or colloidal systems (9). Chemical penetration en-
hancers (CPEs) can perturb temporarily the barrier 
function of skin. On the other hand, physicochemi-
cal properties of drug molecule can be modified 
by several techniques such as prodrugs, ion-pairs, 
supersaturated solutions, eutectic mixtures, ionic 
liquids and inclusion complexes to enhance TDD. 
More recently, colloidal carriers such as vesicu-
lar systems (liposomes, niosomes, transfersomes, 
pharmacosomes, ethosomes, catesomes, and in-
vasomes), solid lipid nanoparticles (SLN), nano-
structured lipid carriers (NLC), nanoemulsions 
and microemulsions have gained the scientists’ at-
tention for passive TDD (9) that will be discussed 
with a special concern about vesicular systems in 
this paper. Moreover, an attempt was made to ref-
erence successful combinatorial TDD systems as 
reported in the literature.

2. Non-colloidal enhancement methods 
2.1. Chemical enhancers
 Chemical penetration enhancers (CPEs) 
including alcohols, glycols, surfactants, fatty ac-
ids, fatty alcohols, sulphoxides, Azon, pyrrol-
idones and terpenes are widely used in TDD for-
mulations. The mechanisms by which they exert 
skin penetration enhancement are mainly through 
altering intercellular lipid bilayer, intracellular 
keratin, desmosome connections between corneo-
cytes,  drug solubility in the vehicle and partition-
ing into skin (10). CPEs are potentially skin irritant 
and only few of them are in the marketed products 
such as ethanol, propylene glycol, sodium lauryl 

sulfate. Terpenes are also gained scientists’ atten-
tion for TDD as they are less toxic and irritant than 
other surfactants. Apart from CPEs, there are sev-
eral approaches to modulate the physicochemical 
property of drug for topical skin formulation such 
as prodrugs, ion-pairs, supersaturated solutions, 
eutectic mixtures, ionic liquids and inclusion com-
plexes.

2.2. Prodrugs
 Prodrugs are often known as pharmaco-
logically inactive compound that will transform 
into a pharmacologically active metabolite after 
administration. This approach is usually seeking 
modifications which are adding a moiety to parent 
drugs for enhancing their solubility or partition co-
efficient. For example, steroid esterification (e.g. 
betamethasone 17-valerate) provides greater topi-
cal anti-inflammatory effect than the parent drug 
(11). Also, N-acyl derivatives of polar 5-fluoroura-
cil causes a reasonable skin permeability (12, 13). 

2.3. Ion-pairs
 Ion-pair formation is a promising chemi-
cal approach for enhancing transdermal delivery of 
charged drug molecules. In this case, adding an op-
positely charged species to the drug molecule will 
result in an ion-pair that can partition and penetrate 
through the SC. Unlike prodrugs, ion-pairs do not 
change the drug chemical structure and pharmaco-
logic action. Diclofenac diethylamine topical gel 
is an example of commercially available ion-pair 
formulation. This approach is also used to control 
the skin permeation of escitalopram and bisoprolol 
skin patch preparations (14, 15).

2.4. Supersaturation
 Supersaturated solutions are formed by 
mixing the drugs with co-solvents or evaporating 
the solvent from the warm skin (11, 16). In ad-
dition, skin absorbed water molecules can act as 
anti-solvent to form supersaturated solutions (17). 
High driving force for leaking drug out of the su-
persaturated solution formulation causes enhanced 
TDD without interfering the barrier properties of 
the SC (18). For example, penetration of estradiol 
across human skin increases 18-folds by using su-
persaturated solution. However, these systems suf-
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fer from low chemical stability and require anti-
nucleating agents to improve their stability. 

2.5. Eutectic mixtures
 Eutectic mixtures are defined as physical 
mixtures of two or more substances with a certain 
part inhibiting each other crystal formation. Al-
though mechanism of the eutectic mixture in trans-
dermal drug delivery is not well understood, it may 
act by reducing drug melting point to below skin 
temperature that leads to enhanced drug solubility 
and permeability or it may act by pore formation 
as a result of leaching the lipids through the skin 
(19). For example, 1:1 eutectic mixture of ligno-
caine-prilocaine forms an oily phase which is then 
formulated as EMLA cream, thereby it provides 
high local anesthesia. In another case, various ra-
tios of meloxicam and thymol mixture resulted in 
eutectic mixtures with more skin permeation than 
pure meloxicam (20). 

2.6. Deep eutectic solvents and ionic liquids
 Deep eutectic solvents (DES) are eu-
tectic systems formed from mixture of Bronsted 
or Lewis acids and bases. Several fundamental 
characteristics of DES forming through strong 
hydrogen bonds or interactions between partially 
ionized or non-ionized species include viscosity, 
miscibility, low volatility and possible penetration 
enhancement that can be controlled through care-
ful selection of components and their mixing ratio. 
For example, choline and geranic acid form a deep 
eutectic solvent enhancing permeability of insulin 
across porcine skin (21). 
 Ionic liquids (ILs) are a group of com-
pounds composed of low-melting ions. The cation 
is generally a bulky organic agent such as qua-
ternary ammonium, imidazolium, pyrrolidinium, 
pyridinium and phosphonium, whereas the anion 
is a small compound. 1-octyl-3-methylimidazoli-
um-based ILs have been conventionally used for 
TDD, which has been replaced by bioinspired cho-
line based ILs with favorable biodegradation and 
low toxicity. Several enhancement mechanisms 
are proposed for ILs: a) drug solubilization in 
vehicle, b) fluidization of the lipid bilayer, c) dis-
ruption of the cellular matrix by acting on keratin 
and d) extraction of the SC lipid components. ILs 

can be used in pre-treatment interventions, vari-
ous conventional and colloidal formulations such 
as microemulsions, and as active pharmaceutical 
ingredient (API-ILs) (22). For example, transder-
mal absorption of lidocaine enhances by the ionic 
liquid lidocainium docusate compound (23).

2.7. Inclusion complexes
 Inclusion complex formation with cyclo-
dextrins (CDs), cyclic oligosaccharides composed 
of glucopyranosyl units, is among the methods 
used for enhancing solubility, dissolution rate, 
stability and biomembrane permeability of guest 
drug molecules (24). For example, to improve cur-
cumin solubility for the preparation of a transpar-
ent gel and also to enhance the skin permeability, 
β-cyclodextrin–CD complex has been prepared 
(25). β-CD is also useful for enhancing skin per-
meability of hydrophilic drugs, which is attributed 
to extraction of SC lipids by β-CD (26). Moreover, 
combination of hydroxypropyl-β-CD with elas-
tic liposomes containing Tego® care 450 as edge 
activator provides a sustained caffeic acid release 
and higher skin permeability than free caffeic acid 
solution (27).

3. Colloidal systems 
3.1. Microemulsions
 Microemulsions (MEs) are thermodynam-
ically stable transparent dispersions of oil, water 
and relatively high concentration of surfactants. 
Their small particle size (<100–200 nm), capabil-
ity to spontaneous formation, transparency, low 
viscosity, increased drug solubility and bioavail-
ability are among the most interesting advantag-
es. The permeation enhancement depends on the 
choice and concentration of suitable oily phase, 
surfactant and co-surfactant (28). Several excel-
lent reviews provide examples of MEs for TDD 
of wide variety of drugs (28-32).They can enhance 
TDD by disrupting the skin lipid structure or im-
proving drug stability in formulations (33). Gupta 
et al. showed that transdermal flux of 5-fluoroura-
cil increases up to 6 folds using MEs of sodium 
bis (2-ethylhexyl) sulfosuccinate: water: isopropyl 
myristate in comparison to an aqueous solution 
(34). Similarly, enhanced transdermal flux of tet-
racaine hydrochloride from lecithin/ n-propanol/ 
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isopropyl myristate/ water MEs was reported (35). 
Zhu et al. showed that skin permeation of penci-
clovir from MEs containing oleic acid/ Cremo-
phor EL/ ethanol/ water can be 3.5 folds higher 
than commercial creams (36). Tabosa et al. also 
reported a range of MEs containing a mixture of 
Cremophor EL, Tween 20, oleic acid and water 
for the enhancement of skin permeability of lapa-
chol (37). Gallarate et al. revealed that stability of 
ascorbic acid against oxidation increases in w/o/w 
MEs in comparison to the aqueous formulations 
(38). It has been shown that the in vivo efficacy of 
lidocaine/ prilocaine eutectic mixture can be aug-
mented by phospholipid ME hydrogel (39). In an-
other study, eutectic mixture of menthol and cam-
phor (1:1 w/w) was used for preparing o/w ME of 
glabridin. A synergistic enhancement of the skin 
permeation has been found for the combination 
of the eutectic mixture and ME in the formulation 
(40). 

3.2. Nanoemulsions
 Nanoemulsions (NEs) are a certain type 
of emulsions with droplet sizes in range of 20-200 
nm. Unlike MEs, they are thermodynamically un-
stable and generally require external energy for 
their preparation. They contain oily phase (natural 
or synthetic lipids, fatty acids, oils, triglycerides, 
etc.), emulsifiers (lecithins, Cremophor EL, glyc-
erides, polyethylene oxide sorbitan ester, etc.), ad-
ditives (buffers, antioxidants, preservatives) and 
active pharmaceutical ingredient. NEs are superior 
to MEs because of lower skin irritation due to the 
lower amount of surfactant needed for their prepa-
ration. They offer also several advantages for TDD 
such as potential for skin hydration, high drug load-
ing, skin penetration enhancement, extended drug 
release and depot action. Moreover, it is believed 
that incorporation of cationic lipids such as phyto-
sphingosine may play an essential role for attach-
ment of NE oily droplets to SC for successful TDD 
(41).  NEs have been applied for transdermal de-
livery of a broad range of drugs such as ropinirole 
hydrochloride (42), glycyrrhizin (43), carvedilol 
(44) and aceclofenac (45). Enhanced skin delivery 
of minoxidil loaded in NEs containing oleic acid 
or eucalyptol as CPEs has been reported by Ben-
son et al (46). The NE formulation enhances both 

the drug solubility and the skin diffusivity, caus-
ing high skin permeation of minoxidil significantly 
more than aqueous drug solution. In another study, 
a topical film containing o/w NE formulation of 
carvedilol was prepared that showed a substantial 
increases in the steady state flux and permeability 
coefficient of the drug (47). 

3.3. Pickering emulsion
 Pickering emulsions (PEs) are a type of 
emulsions, being developed in order to reduce 
surfactant-induced toxicity, a common problem in 
nano- and micro-emulsions (48). They are emul-
sions stabilized with solid colloidal particles (rath-
er than chemical surfactants) such as zein, starch, 
silica, titanium dioxide and clay particles to pre-
vent droplet coalescence (49, 50). Despite the po-
tential application of PEs for TDD, no marketed 
product uses this technology possibly due to lack 
of toxicological information (51).

3.4. Lipid nanoparticles
 SLNs and NLCs are the main classes of 
lipid nanoparticles presenting enhanced skin per-
meation (52, 53). SLNs are modifications of o/w 
NEs in which the oily phase is replaced by a physi-
ologically biocompatible solid lipid or a blend of 
lipids such as fatty acids or triglycerides. Com-
pared with emulsions, SLNs exhibit negligible 
higher stability, skin irritation, and more control 
over the drug release (54). Biocompatibility of tri-
glycerides bypass the toxicity challenges and make 
SLNs well suited for inflamed and abraded skins. 
SLNs also have several advantages as TDD such 
as: 1) their occlusive effect on skin causes skin 
hydration (55), 2) crystal lattice of SLNs can pro-
tect labile agents from degradation (56), 3) high 
loading of lipophilic substances (57), 4) slow drug 
release and 5) small particle size which leads to 
close contact to SC and enhanced skin penetration 
(58). In contrast to SLNs, NLCs comprise mix-
ture of liquid and solid lipids (59). They not only 
present SLNs advantages, but also overcome their 
limitations such as unfavorable drug leakage dur-
ing the preparation process (i.e. low drug loading 
or expulsion) and possible burst effect (60, 61). 
 Application of SLNs and NLCs for 
TDD have increased during recent years. Lipid 
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nanoparticles are successfully used for the skin 
penetration enhancement of a wide range of drugs 
such as triptolide (62), flurbiprofen (63), metfor-
min (64), lornoxicam (65), safranal (66) and olan-
zapine (67). For example, tape stripping method 
shows enhanced skin penetration of coenzyme 
Q10 by SLN and NLC structures in comparison 
with liquid paraffin and isopropanol mixture (68). 
In another study, podophyllotoxin-loaded SLNs 
increases drug accumulation in the SC of porcine 
skin to nearly 3.5 times in comparison to 0.15% 
tincture (69). Similarly, application of SLNs in 
the treatment of atopic dermatitis shows the pred-
nicarbate loaded SLNs can induce nearly 4-fold 
more epidermal localization than standard cream 
and ointment (70). In another study, the tacrolimus 
loaded NLCs were prepared and their penetration 
rates through the hairless mouse skin were investi-
gated, showing that the penetration rates of NLCs 
were greater than the conventional formulation, 
Prototopic® (71). SLN and NLC preparations can 
also enhance transdermal drug bioavailability as 
attained 4.4 folds for flurbiprofen. SLN and NLC 
dispersions can also provide a sustained drug re-
lease especially if they are combined with gel for-
mulation (72). By SLN encapsulation, a better pro-
tection from hydrolysis and improved permeation 
into SC can be achieved as shown for all-trans reti-
noic acid (atRA) which causes irritation, erythema 
and has poor stability in combination with hydro-
quinone (73). Topical preparation of the piroxicam 

loaded SLN shows higher skin permeation of the 
drug in comparison to commercial gel formula-
tion. In addition, it has been revealed that the par-
ticle size can influence on the skin permeation rate 
(74). To target hair follicle, various fabrication 
factors including surfactant/lipid ratio, mixing rate 
and addition time of the organic to aqueous phase 
have been considered for the preparation of cy-
proterone loaded NLCs with different sizes. NLCs 
with the diameter of 300 nm accumulate in the hair 
follicles more significantly and show a sustained 
drug release (75). 
 Lipid nanoparticles can also be combined 
with other permeation enhancement methods. For 
example, synergistic effects of skin micro-nee-
dling and co-administration of NLCs loaded with 
total alkaloid extracts from Aconitum sinomonta-
num has been explored (76).

4. Vesicular lipid formulations
 Vesicular lipid carriers are among the 
most popular formulation for TDD. Vesicles are 
aqueous-filled colloidal bilayer forming carriers 
with amphiphilic shell(s) (77). Hydrophilic drugs 
can be encapsulated in the internal aqueous core, 
whereas lipophilic and amphiphilic drugs can be 
incorporated in the lipid bilayer(s) by hydropho-
bic or electrostatic interactions (78). Lipid-based 
vesicles have some favorable properties for TDD 
applications, including:

Table 1. Recent investigations on the lipid-based vesicular carriers for transdermal drug delivery and 

their achievements.
Type Drug Vesicle composition Achievements Ref.
Liposome Ibuprofen lecithin, cholesterol, dicetyl phos-

phate
higher transdermal flux (79)

Peptide-modi-
fied liposome

Vemurafenib lecithin, sodium cholate, choles-
terol

high cellular uptake and skin per-
meability in-vitro, enhanced antitu-
mor activity and safety in-vivo

(80)

pH-sensitive li-
posomes

Quercetin egg lecithin, N-succinyl-chitosan, 
chitosan oligosaccharide

increased stability against surfac-
tants, controlled drug release, en-
hanced skin permeation

(81)

Liposome Finasteride egg lecithin, cholesterol, dice-
tylphosphate 

enhanced delivery to the piloseba-
ceous units

(82)

Transferosome Cytarabine soy lecithin, sodium deoxycholate higher transdermal flux (83)
Transferosome Miconazole 

nitrate
soy lecithin, sodium deoxycholate, 
Span 80, Span 60, Tween 80 

higher skin permeation, enhanced 
antifungal performance

(84)
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Continued Table 1. 
Type Drug Vesicle composition Achievements Ref.
Transferosome Imperatorin 

(Chinese herb-
al medicine)

lecithin,  cholesterol, dicetyl phos-
phate,  stearylamine  

sustained drug release, enhanced 
transdermal flux

(85)

Proniosome Mefenamic 
acid

Span 80, cholesterol reduction of rat paw edema (86)

Niosome Febuxostat Span 60,  cholesterol prolonged drug permeation (87)
Noisome Lacidipine Span 60,  cholesterol, soy lecithin higher skin permeation, higher re-

duction in blood pressure 
(88)

Ethosome Testosterone 
propionate

lecithin, Cremophor EL higher transdermal flux (89)

Ethosomal gel Raloxifen soy plecithin, cholesterol, saponin, 
Tween 20, Triton X-100

higher transdermal flux, higher bio-
availability 

(90)

Invasome Olmesartan lecithin, b-citronellene (terpene) higher transdermal flux and  bio-
availability 

(91)

Invasome Isradipine lecithin, b-citronellene (terpene) high transdermal flux (92)

a) act as drug carriers for delivering drug into or 
across skin layers,
b) can change the intercellular lipids within the 
SC,
c) solubilize lipophilic drugs,
d) serve as a depot for sustained drug release,

 e) serve as rate-limiting membrane barriers to 
control TDD and systemic absorption.

 Although there are few marketed topical 
drug products containing vesicular lipids, various 
systems are introduced as drug carriers for TDD. 
Table 1 summarizes lipid-based vesicular carriers 
including liposomes, niosomes, deformable lipo-
somes or transfersomes, ethosomes, catesome, and 
invasome, which will be explained in the follow-
ing sections.

4.1. Liposomes 
 Liposomes have received huge attentions 
for drug delivery. They have shown to be clinical-
ly more preferable to conventional dosage forms 
for intravenous and topical routes of administra-
tion (93-95). They also present a good potential 
to provide high local drug concentrations within 
the skin (9, 96). In most cases, they are composed 
of phosphatidylcholine (lecithin) extracted from 
soybean or egg yolk (97). Addition of cholesterol 
to the formulation stabilizes the resulting vesicles 
though increasing the rigidity of lipid bilayer. The 
mechanism by which liposomes can enhance skin 

permeation has not been clearly understood yet. 
They may penetrate the SC, interact with the skin 
lipids and release the loaded drug into SC. Lipo-
somes are suitable for drug delivery to upper skin 
layers, as they only accumulate in the SC with 
minimal drug penetration to the deeper tissues and 
systemic circulation (98-100). Pevaryl lipogel® is 
the first topical liposomal product containing ec-
onazole that has been introduced into the market 
since 1988 for the treatment of dermatomycosis. 
Daylong Actinica® is a liposomal sunscreen prod-
uct that reduces the risk of actinic keratosis lesions 
and severe skin lesions. Psoriatic patients also ben-
efit from the use of topical gel of liposomal dithra-
nol. Earlier liposome researches are focused on 
the potential use of liposomes for topical delivery 
of steroids such as triamcinolone acetonide (101, 
102), triamcinolone acetonide-2-palmitate (103), 
hydrocortisone (101, 104), betamethasone dipro-
pionate (104), cortisol (105), progesterone (106-
109), dihydrotestosterone (110), bunazosin hydro-
chloride (111), flufenamic acid (112), dyphylline 
(113), clindamycin hydrochloride (114) and ibu-
profen (79). Recent studies show the applicabil-
ity of liposomes for delivery of macromolecules 
such as interferon (115), gene delivery (116) and 
cutaneous vaccination (117).  Peptide-modified li-
posomes were applied to delivery of vemurafenib 
through skin for the treatment of melanoma. The 
cubic-shaped liposomes showed high cellular 
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uptake and skin permeability in vitro. Moreover, 
more enhanced antitumor activity and safety were 
reported for the peptide targeted liposomal vemu-
rafenib in comparison to oral administration or 
I.V. injection (80). Surfactant-stable, pH-sensitive 
liposomes containing quercetin were prepared us-
ing layer-by-layer coating technology with N-suc-
cinylchitosan and chitosan oligosaccharide. This 
formulation can be applied to increase stability 
against surfactants, to control drug release and to 
enhance the skin penetration of quercetin (81). In 
another study, it was shown that the physical state 
of liposomes or niosomes can influence on the ex-
tent of finasteride permeation through and deposi-
tion into skin. Results revealed that the vesicular 
finasteride (especially in liquid crystalline state) 
had a lower skin permeation, but an enhanced de-
livery to the pilosebaceous units (82).
 Some studies have been carried out to 
investigate the adding value of liposome technol-
ogy in combination with other passive or active 
enhancement methods (11). Combination of lipo-
somes with physical enhancement techniques such 
as electroporation and iontophoresis have been re-
ported (118, 119). For example, Zorec et al. com-
bined the liposomal formulation of drug with the 
physical methods. The results showed that conven-
tional liposomes have little or no value on TDD; 
however their combination with electroporation 
and sonoporation considerably enhances drug ef-
flux across SC (120). 

4.2. Transferosomes
 Transferosomes are a special type of elas-
tic or ultra-deformable liposomes that consists of 
lecithin and also an edge activator for increasing 
deformability of the bilayers. Sodium cholate, so-
dium deoxycholate, Span 60, 65 and 80, Tween 20, 
60 and 80 are the mostly used edge activators (37, 
63). It was claimed that they are squeezed through 
channels in the SC and penetrate into deeper skin 
because of the presence of edge activator. Also, 
gradient of water between the skin surface and vi-
able epidermis is generally believed as the driv-
ing force for skin penetration of Transferosomes 
across dermal layers (37). Due to their capability 
to bypass skin barriers, Transferosomes are suc-
cessfully used for the skin penetration enhance-

ment of a broad range of drugs including 5-fluro-
uracil (121), lidocaine (121, 122), tetracaine (122), 
cyclosporin A (123), insulin (124), diclofenac 
(125, 126), triamcinolone acetonide (127), hydro-
cortisone (128), dexamethasone (129), levonorg-
estrel (130), estradiol (131), low molecular weight 
heparin (132), methotrexate (133), zidovudine 
(134), ketoprofen (135) and cytarabine (83). For 
example, Transferosome technology has been em-
ployed for transdermal delivery of micronazole 
nitrate (a widely used antifungal agent) that shows 
higher rate of drug transfer through the skin and 
more enhanced antifungal performance than con-
ventional liposomes or free drug solution (84). In 
another study, Transfersomes loading imperatorin 
(Chinese herbal medicine) was developed by the 
thin-film hydration technique. The results showed 
that cationic Transferosomes have satisfactory en-
capsulation efficiency, particle size, elasticity, sus-
tained drug release and enhanced transdermal flux 
of imperatorin (85).
 Application of Transferosomes in combi-
nation with chemical penetration enhancers can 
also lead to more efficient TDD of hydrophilic 
agents. For example, the lyophilized Transfer-
somal gel formulation composed of Tween 20 (as 
an edge activator), oleic acid (as a penetration en-
hancer), mannitol (as a cryopretectant) and a gell-
ing agent (HPMC, CMC or sodium alginate) was 
successfully employed for transdermal delivery 
of buspirone HCl (a hydrophilic anxiolytic model 
drug) (136). 

4.3. Niosomes (nonionic surfactant vesicles)
 Niosomes are vesiclular carriers composed 
of non-ionic alkyl or dialkyl polyglycerol ether 
surfactants with cholesterol. Nonionic surfactants 
such as Span 60, 40 and 80, Tween 20, 40 and 80, 
Brij 52, 58, 35 and 30 form closed bilayer vesicles 
while cholesterol gives shape and rigidity to them  
(137). Niosomes are regarded as efficient TDD ve-
hicles since they can be successfully applied for 
a prolonged and enhanced skin permeation (138) 
as shown for various drugs such as mefenamic 
acid (86), febuxostat (87) and lacidipine (128). In 
one study, lidocaine hydrochloride entrapped in 
the Niosomal formulation composed of Tween 20 
and cholesterol that shows better local anesthetic 
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performance in comparison with liposomes (139). 
To avoid systemic adverse effects such as hepa-
totoxicity, the Niosomal methotrexate in chitosan 
gel has been formulated, showing significant re-
duction in psoriatic lesion after 12 weeks (140). 
In another example, gallic acid was prepared in 
two forms of elastic and non-elastic Niosomes 
for antiaging topical application that shows more 
enhanced permeation of the loaded gallic acid 
through rat skin for the elastic Niosomes (141). 
Niosomal gel of celecoxib shows 6.5 times higher 
drug deposition in deep skin layer than the drug 
solution (142). To overcome side effects of topi-
cally administered benzyl peroxide used for treat-
ing acne, the Niosomal formulation was prepared 
and then incorporated into HPMC gel. The results 
indicate favorable drug permeation through skin, 
extended drug release and reduced adverse effects 
such as itching, skin redness and irritation (143). 
One of the promising dermal treatment for acne is 
gallidermin (a cyclic peptide antibiotic). Anionic 
Niosomal gel formulation composed of choles-
terol, Tween60 and diacetyl phosphate not only 
enhances chemical stability of gallidermin, but 
also provides efficient localization and favorable 
skin permeation (138). In another study, Narcis-
sus tazetta extract (Traditional Persian Medicine) 
loaded Niosomal formulations composed of Span 
60, Tween 60 and cholesterol are proposed for 
wound healing application. In-vitro experiment on 
human dermal fibroblasts (the scratch test) showed 
superior action of the Niosomal formulation (144). 

4.4. Ethosomes
 Ethosomes are vesicular carriers com-
posed of phospholipid, water and ethanol (123). 
Because of the interdigitation effect on lipid bilay-
ers, high ethanol concentrations (20-45%) results 
in particle sizes smaller than liposomes. It has 
been shown that presence of ethanol causes high 
encapsulation efficiency due to solubilizing activ-
ity of ethanol for a wide range of lipophilic drugs 
(123, 145-147). It also reduces the melting tem-
perature of SC lipids and increases their fluidity 
(148). Ethosomes have been used for delivery of 
various drugs across skin such as minoxidil (145), 
testosterone (145), acyclovir (149), cannabidiol 
(150), erythromycin (151), ammonium glycyr-

rhizinate (152), sotalol (153), sodium salicylate 
(153), propranolol (153), trihexyphenidyl (154), 
zidovudine (155), azelaic acid (156), ketotifen 
(147), clonazepam (157) and aceclofenac (158). 
Ethosomal carbomer gel containing 30% ethanol 
was applied for transdermal delivery of antigen 
(89).  In another study, surfactant-modified testos-
terone propionate loaded Ethosomes show higher 
entrapment efficiency and stability than liposomal 
preparations. Furthermore, higher transdermal flux 
and lower lag time than the liposomal preparation 
were shown (159). Similarly, raloxifene loaded 
ethosomal formulations show higher transdermal 
flux than the conventional liposomes and higher 
systemic bioavailability in comparison with the 
oral formulation (90). 
 Ethosomal formulations can be used in 
combination with CPEs. For example, fluconazole-
loaded liposomal formulation and Ethosomes 
containing turpentine (as a penetration enhancer) 
leads to smaller vesicles, suitable encapsulation ef-
ficiency, enhanced skin permeation and antifungal 
activity in-vitro (160).

4.5. Catezomes
 Catezomes are non-phospholipid based 
vesicles composed of fatty acid salts of quaternary 
amines (161). They can load and release both hy-
drophobic and hydrophilic compounds, which may 
be altered by changing the medium ionic strength. 
Catezomes can keep active materials on the skin 
surface due to their cationic surface charge; how-
ever, due to their minimal skin penetration, they 
are suitable for delivery to the superficial layers 
of skin as intended for sunscreens, fragrances, or 
enzymes (162).

4.6. Invasomes
 Penetration enhancer-containing vesicles 
(PEVs), also called Invasomes, are composed of 
phosphatidylcholine, ethanol and a mixture of ter-
penes (163). It has been proposed they enhance 
synergistically skin penetration of minoxidil (163) 
and diclofenac (164) by combinatorial use of elas-
tic vesicles and terpenes. Invasomes containing 
olmesartan and β-citronellene (as a penetration 
enhancer) were prepared in order to overcome the 
short half-life, and low oral bioavailability. The 
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results showed high transdermal flux and high 
bioavailability of olmesartan in comparison with 
the marketed tablet formulation (91). In another 
study, high transdermal flux of isradipine was 
achieved for the Invasomes composed of lecithin, 
β-citronellene and ethanol (92).

5. Conclusion 
 TDDs are a good alternative to overcome 
the problems associated with the other routes of 
administration such as intravenous or oral, espe-
cially these delivery systems have other advantag-
es including dosage flexibility and patient compli-
ance. Unfortunately, transdermal flux of drugs is 
often too low through the SC that requires tem-
porary changing of the skin barrier function by 
variety of enhancement methods. Nanoemulsions, 
lipid nanoparticles and vesicles are among the pas-

sive approaches with favorable biocompatibility, 
capacity to load both hydrophobic and hydrophilic 
drugs, controlled drug release, skin penetration, 
retention and permeation. Furthermore, recent in-
vestigations have suggested possibility of loading 
bioactive peptides, proteins or nucleic acids and 
targeted delivery to skin components and cells. 
Certainly, comprehensive physicochemical char-
acterization of such nanocarriers are required for 
a better understanding of the underlying penetra-
tion enhancement mechanisms. Moreover, combi-
nation of lipid-based colloidal systems with other 
techniques (even active methods) can provide a 
possibility for synergistic TDD.
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