Identification and resolving of trace and co-eluted components of Lamium amplexicaule essential oil using two chemometric methods-assisted GC-MS

Document Type : Original Article

Authors

Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran

Abstract

Gas chromatography-mass spectrometry (GC/MS) due to high sensitivity and qualifying the volatile compounds is one of the most practical methods for the analysis of essential oils. Accurate identification of trace components and complete separation of overlapped and embedded peaks are difficult to achieve even if precise conditions are imposed on the chromatographic separation process. In this study, the essential oil of Lamium amplexicaule L. (L. amplexicaule) after extraction by the Clevenger apparatus, was analyzed by GC/MS. This study focuses on the characterization of the trace and co-eluted components of essential oils in the mentioned species using chemometric methods. Advanced multivariate curve resolution (MCR) methods were used to overcome the problem of background, baseline offset and overlapping peaks and recognition of the noises from the trace components in GC/MS. The analysis of GC/MS data without chemometric methods revealed that eighteen components exist in the L. amplexicaule essential oil. It is noteworthy that, by a combination of MCR with GC/MS method, this number was extended to more than twenty-five. Using chemometric tools and methods, components with a percent higher than 0.01%, were identified from noises and other overlapped peaks were resolved for 85.56% of the total relative content of the L. amplexicaule essential oil. The most important volatile constituents were identified as hexahydrofarnesyl acetone, spathulenol, caryophyllene oxide, hexadecanoic acid and trans-phytol respectively.

Highlights

Reza Hajiaghaee (Google Scholar)

Keywords


1.    Azzurra A, Paola P. In 113th Seminar of European Association of Agricultural Economists. Faunalutics. Crete Greece, (2009).
2.    Jing D, Deguang W, Linfang H, Shilin C, Minjian Q.  Application of chemometrics in quality evaluation of medicinal plants. J Med Plant Res. 2011 Sep; 5: 4001–8.
3.    Siham F, Rachid B. The effect of extraction method on the chemical composition of lamium amplexicaule L. ethanol extract determined by HPL-MS/MS. Plant Cell Biotechnol Mol  Biol. 2022 Mar; 23(7&8): 33-38. DOI:10.56557/pcbmb/2022/v23i7-87458.
4.    Jamzad Z. Flora of Iran, Lamiaceae.   Editor: Assadi, Maassoumi, Mozaffarian, vol 76. Research Institute of Forest and Rangelands, Tehran Iran, 2012
5.    I. C. Hedge, “Labiatae,” In: Flora Iranica, Academische Druck-U. Verlagsantalt, Editor: K. H. Rechinger, Vol 150,Graze, 1982, p. 403-476.
6.    Mozaffarian VA. A Dictionary of Iranian Plants Names. Farhang Moaser Publishers, Tehran, (1998) 308-9.
7.    Zargari A. Medicinal Plants. Tehran University Publication (1990) 4: 93-98.
8.    Salehi B, Armstrong L, Rescigno A, Yeskaliyeva B, Seitimova G, Beyatli A, et al. Lamium Plants-A Comprehensive Review on Health Benefits and Biological Activities. Molecules. 2019 May 17;24(10):1913. doi: 10.3390/molecules24101913. PMID: 31109023; PMCID: PMC6571824.
9.    Sørensen JM, Katsiotis ST. Parameters influencing the yield and composition of the essential oil from Cretan Vitex agnus-castus fruits. Planta Med. 2000 Apr;66(3):245-50. doi: 10.1055/s-2000-10685. PMID: 10821051.
10.    Wei C, Wan C, Huang F, Guo T. Extraction of Cinnamomum longepaniculatum deciduous leaves essential oil using solvent-free microwave extraction: Process optimization and quality evaluation. Oil Crop Sci.  2023 Mar; 8 (1): 7–15. doi:10.1016/j.ocsci.2023.02.004.
11.    Ayatollahi SZ, Yousefi G, Badr P. Essential oil analysis of Pistacia vera L. hull samples from Iran. Trends Pharmaceutical Sci. 2021 Jun; 7(2): 105–10. doi: 10.30476/tips.2021.91139.1095. 
12.    Jalali-Heravi M, Parastar H. Recent trends in application of multivariate curve resolution approaches for improving gas chromatography–mass spectrometry analysis of essential oils. Talanta. 2011 May; 85: 835–49. doi: 10.1016/j.talanta.2011.05.045. PMID: 21726708.
13.    Amigo JM, Skov T, Bro R. ChroMATHography: solving chromatographic issues with mathematical models and intuitive graphics. Chem Rev. 2010 Aug 11;110(8):4582-605. doi: 10.1021/cr900394n. PMID: 20469915. 
14.    Lubec G, Afjehi-Sadat L. Limitations and pitfalls in protein identification by mass spectrometry. Chem Rev. 2007 Aug;107(8):3568-84. doi: 10.1021/cr068213f. Epub 2007 Jul 24. PMID: 17645314.
15.    Pellegrino Vidal RB, Allegrini F, Olivieri AC. The effect of constraints on the analytical figures of merit achieved by extended multivariate curve resolution-alternating least-squares. Anal Chim Acta. 2018 Mar 20;1003:10-15. doi: 10.1016/j.aca.2017.12.008. Epub 2017 Dec 28. PMID: 29317024.
16.    Jalali-Heravi M, Parastar H, Sereshti H. Development of a method for analysis of Iranian damask rose oil: combination of gas chromatography-mass spectrometry with Chemometric techniques. Anal Chim Acta. 2008 Aug 8;623(1):11-21. doi: 10.1016/j.aca.2008.05.078. Epub 2008 Jun 12. PMID: 18611452.
17.    Peng TQ, Yin XL, Gu HW, Sun W, Ding B, Hu XC, Ma LA, Wei SD, Liu Z, Ye SY. HPLC-DAD fingerprints combined with chemometric techniques for the authentication of plucking seasons of Laoshan green tea. Food Chem. 2021 Jun 15;347:128959. doi: 10.1016/j.foodchem.2020.128959. Epub 2020 Dec 30. PMID: 33465688.
18.    Tajabadi F, Khalighi-Sigaroodi F, Rezazadeh S. Improving gas chromatography–mass spectrometry analysis of essential oils by multivariate curve resolution: full identification of co‑eluting compounds of Dracocephalum moldavica L. Chromatographia. 2017 July; 80: 1069–77. DOI: 10.1007/s10337-017-3322-2. 
19.    Ghanavi Z, Velayati AA, Farnia P, Mollaei S, Ghanavi J. Volatile Oil Composition of Nigella sativa L. Cultivars Collected from Iran. J Med Plant By-prod. 2023 Dec; 12(4): 375-386. doi:10.22092/jmpb.2022.357895.1455.
20.    Song JJ, Wang X, Wang YY, Zhang YY, Yu YJ. High-throughput identification of volatile and semi-volatile organic compounds in archaeological samples by gas chromatography–mass spectrometry combined with advanced chemometrics methodology. Microchem J. 2020 July; 158: 105289. DOI:10.1016/j.microc.2020.105289. Corpus ID: 224963602.
21.    Adams RP. Identification of essential oil components by gas chromatography/mass spectrometry. Allured Publishing Corporation, Carol Stream 2007;16:65-120..
22.    Ortiz MC, Sarabia L. Quantitative determination in chromatographic analysis based on n-way calibration strategies. J Chromatogr A. 2007 Jul 27;1158(1-2):94-110. doi: 10.1016/j.chroma.2007.04.047. Epub 2007 Apr 22. PMID: 17482630.
23.    Liang YZ, Kvalheim OM, Rahmani A, Brereton RG,  A two-way procedure for background correction of chromatographic/ spectroscopic data by congruence analysis and least-squares fit of the zero-component regions:Comparison with double-centering. Chemom Intell Lab Syst. 1993 Mar; 18: 265–79. doi:10.1016/0169-7439(93)85003-Y. 
24.    Moazeni-Pourasil RS, Piri F, Ghassempour A, Jalali-Heravi M. The use of multivariate curve resolution methods to improve the analysis of muramic acid as bacterial marker using gas chromatography-mass spectrometry: an alternative method to gas chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Feb 15;949-950:1-6. doi: 10.1016/j.jchromb.2013.12.032. Epub 2014 Jan 2. PMID: 24441017.
25.    Pierre Turquais P, Asgedom E G, Walter Sollner W. Coherent noise suppression by learning and analyzing the morphology of the data. Geophysics. 2017 Aug; 82(6):1-54. doi: 10.1190/geo2017-0092.1.
26.    Wasim M, Brereton RG. Determination of number of significant components and key variables using genetic algorithms in liquid chromatography-nuclear magnetic resonance spectroscopy and liquid chromatography-diode array detection. Chemom. Intell Lab Syst. 2006 Apr; 81: 209-17. doi; 10.1016/j.chemolab.2005.12.006.
27.    Jalali-Heravi M, Zekavat B, Sereshti H. Use of gas chromatography-mass spectrometry combined with resolution methods to characterize the essential oil components of Iranian cumin and caraway. J Chromatogr A. 2007 Mar 2;1143(1-2):215-26. doi: 10.1016/j.chroma.2007.01.042. Epub 2007 Jan 18. PMID: 17258753.
28.    Jalali-Heravi M, Parastar H, Sereshti H. Towards obtaining more information from gas chromatography-mass spectrometric data of essential oils: an overview of mean field independent component analysis. J Chromatogr A. 2010 Jul 16;1217(29):4850-61. doi: 10.1016/j.chroma.2010.05.026. Epub 2010 May 24. PMID: 20541212.
29.    Asadollahi-Baboli M, Aghakhani A, Bikdeloo V. Application of Polyamide Nanofibers, SPME/GC-MS, and Chemometrics for Comprehensive Analysis of Volatiles in Thymus vulgaris L. and Thymus serpyllum L. Food Anal Method. 2015 June; 9(2):1-9. doi: 10.1007/s12161-015-0224-5.
30.    Shen H, Stordrange L, Mane R, Kvalheim OV, Liang YZ. The morphological score and its application to chemical rank determination. Chemom. Intell Lab Syst. 2002 May;51:37-47. doi:10.1016/S0169-7439(99)00066-0.
31.    Sajjadi SE, Ghannadi A. Analysis of the Essential Oil of Lamium amplexicaule L.from Northeastern Iran. J Essential Oil Bear Plant. 2012 Mar; 15: 577–81. doi:10.1080/0972060X.2012.10644091.
32.    Nickavar B, Mojab F, Bamasian S. Volatile Components from Aerial Parts of Lamium amplexicaule from Iran. J Essential Oil Bear Plant. 2008 Mar; 11: 36-40. DOI:10.1080/0972060X.2008.10643594.
33.    Jones CD, Woods KE, Setzer WN. A chemical ecological investigation of the allelopathic potential of Lamium amplexicaule and Lamium purpureum. Open J. Ecolog. 2012 Nov; 2: 167-77. doi: 10.4236/oje.2012.24020.