Zoledronic acid-induced mitochondrial impairment, inflammation, and oxidative stress in the rat kidney

Document Type : Original Article

Authors

1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Eastern Mediterranean University, Faculty of Pharmacy, Famagusta, North Cyprus, Turkey

3 Department of Pharmacology and Toxicology, Shahid Beheshti University of Medical Sciences, Faculty of Pharmacy, Tehran, Iran

4 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Zoledronic acid (ZLD) is a bisphosphonate drug widely administered against pathological conditions such as hypercalcemia of malignancy, osteoporosis, bone metastases from solid tumors, and multiple myeloma. Unfortunately, renal injury is a serious and dose-limiting adverse effect of ZLD. There is no specific mechanism for ZLD-induced renal damage. The current study aimed to assess the effects of ZLD (10 and 15 mg/kg, i.p., single dose) on the rat kidney. In this regard, several parameters, including oxidative stress biomarkers, serum level of BUN and creatinine, inflammatory cytokines, kidney histopathology, and indices of mitochondrial function were assessed. A significant increase in serum Cr and BUN revealed renal injury. Moreover, kidney histopathological changes, including interstitial inflammation, tissue necrosis, and tubular atrophy, were detected in ZLD-treated rats. Biomarkers of oxidative stress, including a significant increase in reactive oxygen species (ROS), depletion of kidney glutathione (GSH) stores, increased lipid peroxidation, and suppression of the total antioxidant capacity, were detected in ZLD-treated animals. ZLD also significantly increased renal levels of TNF-α, IL-6, and IL-1β. ZLD exposure was also associated with significantly decreased mitochondrial dehydrogenases activity, mitochondrial depolarization, mitochondrial permeabilization, and ATP depletion. These data highlight mitochondrial dysfunction, inflammatory response, and oxidative stress as potential mechanisms in ZLD-induced kidney injury.

Highlights

Heresh Rezaei (Google Scholar)

Reza Heidari (Google Scholar)

Keywords


1.    Coleman R, Burkinshaw R, Winter M, Neville-Webbe H, Lester J, Woodward E, Brown J. Zoledronic acid. Expert Opin Drug Saf. 2011 Jan;10(1):133-45. doi: 10.1517/14740338.2011.540387. Epub 2010 Nov 29. PMID: 21114419.
2.    de Roij van Zuijdewijn C, van Dorp W, Florquin S, Roelofs J, Verburgh K. Bisphosphonate nephropathy: A case series and review of the literature. Br J Clin Pharmacol. 2021 Sep;87(9):3485-3491. doi: 10.1111/bcp.14780. Epub 2021 Mar 4. PMID: 33595131; PMCID: PMC8451932.
3.    Yachoui R. Early onset acute tubular necrosis following single infusion of zoledronate. Clin Cases Miner Bone Metab. 2016 May-Aug;13(2):154-156. doi: 10.11138/ccmbm/2016.13.2.154. Epub 2016 Oct 5. PMID: 27920815; PMCID: PMC5119716.
4.    Katsunuma R, Mitsumoto K, Mizumoto A, Hirai Y, Nakauchi C, Uzu T. Fanconi Syndrome Associated with Long-term Treatment with Zoledronate. Intern Med. 2023 Jul 15;62(14):2103-2105. doi: 10.2169/internalmedicine.0647-22. Epub 2022 Nov 30. PMID: 36450467; PMCID: PMC10400390.
5.    Fixen CW, Fixen DR. Renal safety of zoledronic acid for osteoporosis in adults 75 years and older. Osteoporos Int. 2022 Nov;33(11):2417-2422. doi: 10.1007/s00198-022-06499-4. Epub 2022 Jul 13. PMID: 35829757.
6.    Mazj S, Lichtman SM. Renal dysfunction associated with bisphosphonate use: retrospective analysis of 293 patients with respect to age and other clinical characteristics. J Clin Oncol. 2004;22;8039. doi: 10.1200/jco.2004.22.90140.8039.
7.    Kara M, Boran T, Öztaş E, Jannuzzi AT, Özden S, Özhan G. Zoledronic acid-induced oxidative damage and endoplasmic reticulum stress-mediated apoptosis in human embryonic kidney (HEK-293) cells. J Biochem Mol Toxicol. 2022 Aug;36(8):e23083. doi: 10.1002/jbt.23083. Epub 2022 May 19. PMID: 35587103.
8.    Lan Z, Chai K, Jiang Y, Liu X. Characterization of urinary biomarkers and their relevant mechanisms of zoledronate-induced nephrotoxicity using rats and HK-2 cells. Hum Exp Toxicol. 2019 May;38(5):598-609. doi: 10.1177/0960327119829527. Epub 2019 Feb 11. PMID: 30744404.
9.    Lash LH. Diverse Roles of Mitochondria in Renal Injury from Environmental Toxicants and Therapeutic Drugs. Int J Mol Sci. 2021 Apr 17;22(8):4172. doi: 10.3390/ijms22084172. PMID: 33920653; PMCID: PMC8073222.
10.    Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond). 2015 Nov 25;12:49. doi: 10.1186/s12986-015-0044-z. PMID: 26612997; PMCID: PMC4660721.
11.    Chakraborti S, Rahaman SM, Alam MN, Mandal A, Ghosh B, Dey K, Chakraborti T. Na+/K+-ATPase: A Perspective. In: Chakraborti S, Dhalla NS, editors. Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease: Springer International Publishing; 2016. p. 3-30.
12.    Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017 Oct;13(10):629-646. doi: 10.1038/nrneph.2017.107. Epub 2017 Aug 14. PMID: 28804120; PMCID: PMC5965678.
13.    Heidari R. The footprints of mitochondrial impairment and cellular energy crisis in the pathogenesis of xenobiotics-induced nephrotoxicity, serum electrolytes imbalance, and Fanconi's syndrome: A comprehensive review. Toxicology. 2019 Jul 1;423:1-31. doi: 10.1016/j.tox.2019.05.002. Epub 2019 May 13. PMID: 31095988.
14.    Li Z, Liu Z, Luo M, Li X, Chen H, Gong S, Zhang M, Zhang Y, Liu H, Li X. The pathological role of damaged organelles in renal tubular epithelial cells in the progression of acute kidney injury. Cell Death Discov. 2022 May 2;8(1):239. doi: 10.1038/s41420-022-01034-0. PMID: 35501332; PMCID: PMC9061711.
15.    Gai Z, Gui T, Kullak-Ublick GA, Li Y, Visentin M. The Role of Mitochondria in Drug-Induced Kidney Injury. Front Physiol. 2020 Sep 4;11:1079. doi: 10.3389/fphys.2020.01079. PMID: 33013462; PMCID: PMC7500167.
16.    Zhang X, Agborbesong E, Li X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int J Mol Sci. 2021 Oct 19;22(20):11253. doi: 10.3390/ijms222011253. PMID: 34681922; PMCID: PMC8537003.
17.    Sert NPd, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020;18;e3000410. doi: 10.1371/journal.pbio.3000410.
18.    Heidari R, Niknahad H. The role and study of mitochondrial impairment and oxidative stress in cholestasis. In: Vinken M, editor. Experimental Cholestasis Research. Methods in Molecular Biology. 1981. New York, NY: Springer; 2019. p. 117-32.
19.    Heidari R, Jafari F, Khodaei F, Shirazi Yeganeh B, Niknahad H. Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology (Carlton). 2018 Apr;23(4):351-361. doi: 10.1111/nep.13012. PMID: 28141910.
20.    Heidari R, Taheri V, Rahimi HR, Shirazi Yeganeh B, Niknahad H, Najibi A. Sulfasalazine-induced renal injury in rats and the protective role of thiol-reductants. Ren Fail. 2016;38(1):137-41. doi: 10.3109/0886022X.2015.1096731. Epub 2015 Oct 19. PMID: 26479898.
21.    Jamshidzadeh A, Heidari R, Golzar T, Derakhshanfar A. Effect of Eisenia foetida Extract against Cisplatin-Induced Kidney Injury in Rats. J Diet Suppl. 2016;13(5):551-9. doi: 10.3109/19390211.2015.1124163. Epub 2016 Feb 11. PMID: 26864051.
22.    Mousavi K, Niknahad H, Li H, Jia Z, Manthari RK, Zhao Y, et al. The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury. Toxicol Res (Camb). 2021 Aug 4;10(4):911-927. doi: 10.1093/toxres/tfab073. PMID: 34484683; PMCID: PMC8403611.
23.    Shafiekhani M, Ommati MM, Azarpira N, Heidari R, Salarian AA. Glycine supplementation mitigates lead-induced renal injury in mice. J Exp Pharmacol. 2019 Feb 18;11:15-22. doi: 10.2147/JEP.S190846. PMID: 30858736; PMCID: PMC6385776.
24.    Heidari R, Ommati MM, Niknahad H. Drug-induced mitochondrial impairment: Mechanisms and testing systems. In: de Oliveira MR, editor. Mitochondrial Intoxication: Academic Press; 2023. p. 49-76.
25.    Heidari R, Ommati MM, Niknahad H. Mitochondria as biosynthetic centers and targeted therapeutics. In: Pourahmad J, Rezaei M, editors. Mitochondrial Metabolism: Academic Press; 2021. p. 19-47.
26.    Heidari R, Ommati MM, Niknahad H. Ammonia. In: de Oliveira MR, editor. Mitochondrial Intoxication: Academic Press; 2023. p. 249-70.
27.    Hall AM, Bass P, Unwin RJ. Drug-induced renal Fanconi syndrome. QJM. 2014 Apr;107(4):261-9. doi: 10.1093/qjmed/hct258. Epub 2013 Dec 24. PMID: 24368854.
28.    Sert İU, Kilic O, Akand M, Saglik L, Avunduk MC, Erdemli E. The role of vitamin E in the prevention of zoledronic acid-induced nephrotoxicity in rats: a light and electron microscopy study. Arch Med Sci. 2018 Mar;14(2):381-387. doi: 10.5114/aoms.2016.60227. Epub 2016 May 30. PMID: 29593813; PMCID: PMC5868662.
29.    Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother. 2019 Jan;109:103-111. doi: 10.1016/j.biopha.2018.10.093. Epub 2018 Nov 2. PMID: 30396066.
30.    Vazin A, Heidari R, Khodami Z. Curcumin Supplementation Alleviates Polymyxin E-Induced Nephrotoxicity. J Exp Pharmacol. 2020 Jun 4;12:129-136. doi: 10.2147/JEP.S255861. PMID: 32581601; PMCID: PMC7280086.
31.    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 2004 Oct;287(4):C817-33. doi: 10.1152/ajpcell.00139.2004. PMID: 15355853.
32.    Rahbari-Oskoui F, Fielder O, Ghasemzadeh N, Hennigar R. Prolonged recovery time from zoledronic Acid induced acute tubular necrosis: a case report and review of the literature. Case Rep Nephrol. 2013;2013:651246. doi: 10.1155/2013/651246. Epub 2013 Jul 29. PMID: 24527249; PMCID: PMC3914195.