Neural Prosthetics: Advancements and Ethical Consideration in Brain-Computer Interfaces

Document Type : Commentary-Article

Authors

1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Faculty of Dentistry, Islamic Azad University, Shiraz Branch, Shiraz, Iran

3 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Neural prosthetics employ different signals, such as chemical or electrical signals from the human nervous system, for stimulating or restoring the capabilities of injured people or different disease conditions (1). They are artificial extensions of the body that repair or fortify the human nervous system after various injuries or diseases (2).
From ancient times, the study of neural systems has been a subject of fascination. Significant progress has been made in our understanding of neural systems, from the ancient understanding of the role of the brain in the body to today's research on artificial intelligence. Three main types of neural systems have been identified today: sensory, motor, and associative (3). These systems work together to let us perceive, process, and react to the world around us.
The approach helps patients with various diseases, and implanting neural chips in the brain, is encouraging. These chips can monitor brain activity and relax symptoms such as tremors, seizures, and depression (4, 5). However, before widespread implementation, there is a need to address ethical concerns and potential risks.

Highlights

Yasaman Mohammadi (Google Scholar)

Mohammad Hossein Morowvat (Google Scholar)

Keywords


1.    Herculano-Houzel S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS One. 2011 Mar 1;6(3):e17514. doi: 10.1371/journal.pone.0017514. PMID: 21390261; PMCID: PMC3046985.
2.    Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci. 2007 Aug;8(8):623-35. doi: 10.1038/nrn2196. PMID: 17637800.
3.    Makino H, Hwang EJ, Hedrick NG, Komiyama T. Circuit Mechanisms of Sensorimotor Learning. Neuron. 2016 Nov 23;92(4):705-721. doi: 10.1016/j.neuron.2016.10.029. PMID: 27883902; PMCID: PMC5131723.
4.    Isagulyan ED, Mikhailova VA, Aslakhanova KS, Slavin KV. Prospects of neuromodulation for chronic pain. Brain Disorders. 2022;5:100027.
5.    Yoo J, Shoaran M. Neural interface systems with on-device computing: machine learning and neuromorphic architectures. Curr Opin Biotechnol. 2021 Dec;72:95-101. doi: 10.1016/j.copbio.2021.10.012. Epub 2021 Nov 1. PMID: 34735990.
6.    Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug discovery: a jump-start for electroceuticals. Nature. 2013 Apr 11;496(7444):159-61. doi: 10.1038/496159a. PMID: 23579662; PMCID: PMC4179459.
7.    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005 Mar 3;45(5):651-60. doi: 10.1016/j.neuron.2005.02.014. PMID: 15748841.
8.    Tang LJ, Wang MH, Tian HC, Kang XY, Hong W, Liu JQ. Progress in Research of Flexible MEMS Microelectrodes for Neural Interface. Micromachines (Basel). 2017 Sep 18;8(9):281. doi: 10.3390/mi8090281. PMID: 30400473; PMCID: PMC6190450.
9.    Green R, Abidian MR. Conducting Polymers for Neural Prosthetic and Neural Interface Applications. Adv Mater. 2015 Dec 9;27(46):7620-37. doi: 10.1002/adma.201501810. Epub 2015 Sep 28. PMID: 26414302; PMCID: PMC4681501.
10.    Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013 Feb 6;77(3):406-24. doi: 10.1016/j.neuron.2013.01.020. PMID: 23395370.
11.    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med. 2006 Aug 31;355(9):896-908. doi: 10.1056/NEJMoa060281. Erratum in: N Engl J Med. 2006 Sep 21;355(12):1289. PMID: 16943402.
12.    Cui P, Wang S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J Pharm Anal. 2019 Aug;9(4):238-247. doi: 10.1016/j.jpha.2018.12.001. Epub 2018 Dec 6. PMID: 31452961; PMCID: PMC6704040.
13.    Duan X, Cao Z, Gao K, Yan W, Sun S, Zhou G, et al. Memristor-Based Neuromorphic Chips. Adv Mater. 2024 Jan 2:e2310704. doi: 10.1002/adma.202310704. Epub ahead of print. PMID: 38168750.
14.    Dong H, Lin J, Tao Y, Jia Y, Sun L, Li WJ, et al. AI-enhanced biomedical micro/nanorobots in microfluidics. Lab Chip, 2024,24, 1419-1440
15.    Dong R, Wang L, Li Z, Jiao J, Wu Y, Feng Z, et al. Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation. ACS Nano. 2024.