Dexamethasone Blunts Lung Inflammation in Cholestatic Mice

Document Type : Original Article

Authors

1 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

3 Food and Drug Administration, Iran Ministry of Health and Medical Education, Tehran, Iran

4 Department of Life Sciences, Shanxi Agricultural University, Shanxi, Taigu, China

5 Henan Key Laboratory of Environmental and Animal Product Safety College of Animal Science and Technology Henan University of Science and Technology Luoyang 471000 Henan, China

6 Students Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

7 Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran

8 Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Cholestasis/cirrhosis is a multifaceted clinical complication that influences many organs, including the liver, kidney, heart, skeletal muscle, and lung. Cirrhosis-associated lung injury could lead to severe and lethal consequences, including acute respiratory syndrome and patient dearth. Unfortunately, there is no specific pharmacological intervention to manage cholestasis-induced lung injury. It has been revealed that severe inflammation and its associated complications, such as oxidative stress, are involved in the pathogenesis of cholestasis-associated pulmonary damage. The current study was designed to evaluate the role of dexamethasone (DXM) on lung inflammation in cholestatic mice. For this purpose, bile duct ligated (BDL) mice received DXM (1 and 2.5 mg/kg, i.p, 2 times/week) for 14 days. On day 15, the bronchoalveolar lavage fluid (BALF) was prepared. Several markers, including inflammatory cell infiltration, TNF-α, and IgG, were assessed in the BALF of BDL animals. Significant infiltration of inflammatory cells along with increased TNF-α and IgG were detected in the BALF of BDL mice (14 days after surgery). Moreover, significant ROS formation, glutathione depletion, lipid peroxidation, and protein carbonylation were evident in the lung tissue of the BDL group. It was found that DXM (1 and 2.5 mg/kg) significantly blunted inflammation and oxidative stress in the lung of cholestatic mice. Moreover, lung tissue histopathological changes, including inflammatory cell infiltration, were significantly mitigated in DXM-treated mice. These data offer the potential therapeutic effects of DXM against cholestasis-related complications. Therefore, patients with cholestasis-induced lung injury might benefit from repurposing DXM in clinical settings.

Keywords


1.    Jüngst C, Lammert F. Cholestatic liver disease. Dig Dis. 2013;31(1):152-4. doi: 10.1159/000347210. Epub 2013 Jun 17. PMID: 23797137.
2.    Li T, Chiang JYL. Bile acid-induced liver injury in cholestasis. In: Ding W-X, Yin X-M, editors. Cellular Injury in Liver Diseases. Cell Death in Biology and Diseases. Cham: Springer International Publishing; 2017. p. 143-72.
3.    Rodríguez-Garay EA. Cholestasis: human disease and experimental animal models. Ann Hepatol. 2003 Oct-Dec;2(4):150-8. PMID: 15115953.
4.    Patil A, Mayo MJ. Complications of Cholestasis. In: Md KDL, Md JAT, editors. Cholestatic Liver Disease. Clinical Gastroenterology: Humana Press; 2008. p. 155-69.
5.    Shafaroodi H, Ebrahimi F, Moezi L, Hashemi M, Doostar Y, Ghasemi M, et al. Cholestasis induces apoptosis in mice cardiac cells: the possible role of nitric oxide and oxidative stress. Liver Int. 2010 Jul;30(6):898-905. doi: 10.1111/j.1478-3231.2010.02249.x. Epub 2010 May 20. PMID: 20492516.
6.    Ommati MM, Farshad O, Niknahad H, Arabnezhad MR, Azarpira N, Mohammadi HR, et al. Cholestasis-associated reproductive toxicity in male and female rats: The fundamental role of mitochondrial impairment and oxidative stress. Toxicol Lett. 2019 Nov;316:60-72. doi: 10.1016/j.toxlet.2019.09.009. Epub 2019 Sep 11. PMID: 31520699.
7.    Fickert P, Rosenkranz AR. Cholemic Nephropathy Reloaded. Semin Liver Dis. 2020 Feb;40(1):91-100. doi: 10.1055/s-0039-1698826. Epub 2019 Oct 18. PMID: 31627236.
8.    Farshad O, Ommati MM, Yüzügülen J, Alizadeh S, Mousavi K, Azarpira N, et al. Skeletal muscle mitochondrial impairment in cirrhosis-induced sarcopenia. Trends in Pharmaceutical Sciences. 2020;6;189-204. doi: 10.30476/tips.2020.87789.1067.
9.    Hu ZH, Kong YY, Ren JJ, Huang TJ, Wang YQ, Liu LX. Kidney and lung tissue modifications after BDL-induced liver injury in mice are associated with increased expression of IGFBPrP1 and activation of the NF-κB inflammation pathway. Int J Clin Exp Pathol. 2020 Feb 1;13(2):192-202. PMID: 32211099; PMCID: PMC7061808.
10.    Gill SS, Suri SS, Janardhan KS, Caldwell S, Duke T, Singh B. Role of pulmonary intravascular macrophages in endotoxin-induced lung inflammation and mortality in a rat model. Respir Res. 2008 Oct 24;9(1):69. doi: 10.1186/1465-9921-9-69. PMID: 18950499; PMCID: PMC2584635.
11.    Yu L, Ding Y, Huang T, Huang X. Effect of bile Acid on fetal lung in rat model of intrahepatic cholestasis of pregnancy. Int J Endocrinol. 2014;2014:308274. doi: 10.1155/2014/308274. Epub 2014 Mar 23. PMID: 24778648; PMCID: PMC3980923.
12.    Zecca E, De Luca D, Baroni S, Vento G, Tiberi E, Romagnoli C. Bile acid-induced lung injury in newborn infants: a bronchoalveolar lavage fluid study. Pediatrics. 2008 Jan;121(1):e146-9. doi: 10.1542/peds.2007-1220. PMID: 18166532.
13.    Herraez E, Lozano E, Poli E, Keitel V, De Luca D, Williamson C, et al. Role of macrophages in bile acid-induced inflammatory response of fetal lung during maternal cholestasis. J Mol Med (Berl). 2014 Apr;92(4):359-72. doi: 10.1007/s00109-013-1106-1. Epub 2013 Dec 7. PMID: 24317353.
14.    De Luca D, Minucci A, Zecca E, Piastra M, Pietrini D, Carnielli VP, et al. Bile acids cause secretory phospholipase A2 activity enhancement, revertible by exogenous surfactant administration. Intensive Care Med. 2009 Feb;35(2):321-6. doi: 10.1007/s00134-008-1321-3. Epub 2008 Oct 14. PMID: 18853138.
15.    Shikata F, Sakaue T, Nakashiro K, Okazaki M, Kurata M, Okamura T, et al. Pathophysiology of lung injury induced by common bile duct ligation in mice. PLoS One. 2014 Apr 14;9(4):e94550. doi: 10.1371/journal.pone.0094550. PMID: 24733017; PMCID: PMC3986091.
16.    Chow CW, Herrera Abreu MT, Suzuki T, Downey GP. Oxidative stress and acute lung injury. Am J Respir Cell Mol Biol. 2003 Oct;29(4):427-31. doi: 10.1165/rcmb.F278. PMID: 14500253.
17.    Motoyama T, Okamoto K, Kukita I, Hamaguchi M, Kinoshita Y, Ogawa H. Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit Care Med. 2003 Apr;31(4):1048-52. doi: 10.1097/01.CCM.0000055371.27268.36. PMID: 12682471.
18.    Ommati MM, Amjadinia A, Mousavi K, Azarpira N, Jamshidzadeh A, Heidari R. N-acetyl cysteine treatment mitigates biomarkers of oxidative stress in different tissues of bile duct ligated rats. Stress. 2021 Mar;24(2):213-228. doi: 10.1080/10253890.2020.1777970. Epub 2020 Jun 22. PMID: 32510264.
19.    Mizobuchi M, Manabe C, Yonetani M, Nakao H, Uetani Y, Nakamura H. Effect of dexamethasone therapy on pulmonary function in chronic lung disease: a comparison of disease types. Pediatr Int. 2001 Jun;43(3):226-30. doi: 10.1046/j.1442-200x.2001.01385.x. PMID: 11380913.
20.    Janahi IA, Rehman A, Baloch NU-A. Corticosteroids and Their Use in Respiratory Disorders: IntechOpen; 2017 2017/12/20/.
21.    Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1-2):20-32. doi: 10.1159/000362724. Epub 2014 Sep 12. PMID: 25227506; PMCID: PMC4243162.
22.    Heidari R, Mandegani L, Ghanbarinejad V, Siavashpour A, Ommati MM, Azarpira N, et al. Mitochondrial dysfunction as a mechanism involved in the pathogenesis of cirrhosis-associated cholemic nephropathy. Biomed Pharmacother. 2019 Jan;109:271-280. doi: 10.1016/j.biopha.2018.10.104. Epub 2018 Nov 3. PMID: 30396085.
23.    Heidari R, Jamshidzadeh A, Ghanbarinejad V, Ommati MM, Niknahad H. Taurine supplementation abates cirrhosis-associated locomotor dysfunction. Clin Exp Hepatol. 2018 Jun;4(2):72-82. doi: 10.5114/ceh.2018.75956. Epub 2018 May 25. PMID: 29904723; PMCID: PMC6000746.
24.    Mousavi K, Niknahad H, Li H, Jia Z, Manthari RK, Zhao Y, et al. The activation of nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling blunts cholestasis-induced liver and kidney injury. Toxicol Res (Camb). 2021 Aug 4;10(4):911-927. doi: 10.1093/toxres/tfab073. PMID: 34484683; PMCID: PMC8403611.
25.    Heidari R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Ommati MM, Abdoli N, et al. Mitochondria protection as a mechanism underlying the hepatoprotective effects of glycine in cholestatic mice. Biomed Pharmacother. 2018 Jan;97:1086-1095. doi: 10.1016/j.biopha.2017.10.166. Epub 2017 Nov 10. PMID: 29136945.
26.    Heidari R, Moezi L, Asadi B, Ommati MM, Azarpira N. Hepatoprotective effect of boldine in a bile duct ligated rat model of cholestasis/cirrhosis. PharmaNutrition. 2017;5;109-17. doi: 10.1016/j.phanu.2017.07.001.
27.    Siavashpour A, Khalvati B, Azarpira N, Mohammadi H, Niknahad H, Heidari R. Poly (ADP-Ribose) polymerase-1 (PARP-1) overactivity plays a pathogenic role in bile acids-induced nephrotoxicity in cholestatic rats. Toxicol Lett. 2020 May 16;330:144-158. doi: 10.1016/j.toxlet.2020.05.012. Epub ahead of print. PMID: 32422328.
28.    Heidari R, Mohammadi H, Ghanbarinejad V, Ahmadi A, Ommati MM, Niknahad H, et al. Proline supplementation mitigates the early stage of liver injury in bile duct ligated rats. J Basic Clin Physiol Pharmacol. 2018 Dec 19;30(1):91-101. doi: 10.1515/jbcpp-2017-0221. PMID: 30205645.
29.    Daubeuf F, Frossard N. Eosinophils and the ovalbumin mouse model of asthma. Methods Mol Biol. 2014;1178:283-93. doi: 10.1007/978-1-4939-1016-8_24. PMID: 24986625.
30.    Okada S, Hasegawa S, Hasegawa H, Ainai A, Atsuta R, Ikemoto K, et al. Analysis of bronchoalveolar lavage fluid in a mouse model of bronchial asthma and H1N1 2009 infection. Cytokine. 2013 Aug;63(2):194-200. doi: 10.1016/j.cyto.2013.04.035. Epub 2013 May 23. PMID: 23706975.
31.    Abdoli N, Sadeghian I, Azarpira N, Ommati MM, Heidari R. Taurine mitigates bile duct obstruction-associated cholemic nephropathy: effect on oxidative stress and mitochondrial parameters. Clin Exp Hepatol. 2021 Mar;7(1):30-40. doi: 10.5114/ceh.2021.104675. Epub 2021 Mar 25. PMID: 34027113; PMCID: PMC8122090.
32.    Ahmadi A, Niknahad H, Li H, Mobasheri A, Manthari RK, Azarpira N, et al. The inhibition of NFкB signaling and inflammatory response as a strategy for blunting bile acid-induced hepatic and renal toxicity. Toxicol Lett. 2021 Oct 1;349:12-29. doi: 10.1016/j.toxlet.2021.05.012. Epub 2021 Jun 2. Erratum in: Toxicol Lett. 2022 Jan 1;354:65. PMID: 34089816.
33.    Heidari R, Babaei H, Eghbal MA. Ameliorative effects of taurine against methimazole-induced cytotoxicity in isolated rat hepatocytes. Sci Pharm. 2012 Oct-Dec;80(4):987-99. doi: 10.3797/scipharm.1205-16. Epub 2012 Aug 6. PMID: 23264945; PMCID: PMC3528057.
34.    Heidari R, Arabnezhad MR, Ommati MM, Azarpira N, Ghodsimanesh E, Niknahad H. Boldine supplementation regulates mitochondrial function and oxidative stress in a rat model of hepatotoxicity. Pharm Sci. 2019;25;1-10. doi: 10.15171/PS.2019.1.
35.    Shafiekhani M, Ommati MM, Azarpira N, Heidari R, Salarian AA. Glycine supplementation mitigates lead-induced renal injury in mice. J Exp Pharmacol. 2019 Feb 18;11:15-22. doi: 10.2147/JEP.S190846. PMID: 30858736; PMCID: PMC6385776.
36.    Heidari R, Jamshidzadeh A, Ommati MM, Rashidi E, Khodaei F, Sadeghi A, et al. Ammonia-induced mitochondrial impairment is intensified by manganese co-exposure: relevance to the management of subclinical hepatic encephalopathy and cirrhosis-associated brain injury. Clin Exp Hepatol. 2019 May;5(2):109-117. doi: 10.5114/ceh.2019.85071. Epub 2019 May 13. PMID: 31501786; PMCID: PMC6728860.
37.    Heidari R, Jafari F, Khodaei F, Shirazi Yeganeh B, Niknahad H. Mechanism of valproic acid-induced Fanconi syndrome involves mitochondrial dysfunction and oxidative stress in rat kidney. Nephrology (Carlton). 2018 Apr;23(4):351-361. doi: 10.1111/nep.13012. PMID: 28141910.
38.    Heidari R, Behnamrad S, Khodami Z, Ommati MM, Azarpira N, Vazin A. The nephroprotective properties of taurine in colistin-treated mice is mediated through the regulation of mitochondrial function and mitigation of oxidative stress. Biomed Pharmacother. 2019 Jan;109:103-111. doi: 10.1016/j.biopha.2018.10.093. Epub 2018 Nov 2. PMID: 30396066.
39.    Ommati MM, Farshad O, Niknahad H, Mousavi K, Moein M, Azarpira N, et al. Oral administration of thiol-reducing agents mitigates gut barrier disintegrity and bacterial lipopolysaccharide translocation in a rat model of biliary obstruction. Curr Res Pharmacol Drug Discov. 2020 Jun 16;1:10-18. doi: 10.1016/j.crphar.2020.06.001. PMID: 34909638; PMCID: PMC8663936.
40.    Najafi N, Jamshidzadeh A, Fallahzadeh H, Omidi M, Abdoli N, Najibi A, et al. Valproic acid-induced hepatotoxicity and the protective role of thiol reductants. Trend Pharm Sci. 2017;3;63-70. doi: 10.1111/tips.v3i2.122.
41.    Niknahad H, Hosseini H, Gozashtegan F, Ebrahimi F, Azarpira N, Abdoli N, et al. The hepatoprotective role of thiol reductants against mitoxantrone-induced liver injury. Trend Pharm Sci. 2017;3;113-22. doi.
42.    Jamshidzadeh A, Abdoli N, Niknahad H, Azarpira N, Mousavi S, Mardani E, et al. Carnosine supplementation mitigates brain tissue markers of oxidative stress in a rat model of fulminant hepatic failure. Trend Pharm Sci. 2017;3;149-60. doi: 10.1111/tips.v3i3.149.
43.    Heidari R, Niknahad H. The role and study of mitochondrial impairment and oxidative stress in cholestasis. In: Vinken M, editor. Experimental Cholestasis Research. Methods in Molecular Biology. New York, NY: Springer; 2019. p. 117-32.
44.    Heidari R, Ghanbarinejad V, Mohammadi H, Ahmadi A, Esfandiari A, Azarpira N, et al. Dithiothreitol supplementation mitigates hepatic and renal injury in bile duct ligated mice: Potential application in the treatment of cholestasis-associated complications. Biomed Pharmacother. 2018 Mar;99:1022-1032. doi: 10.1016/j.biopha.2018.01.018. 
45.    Ommati MM, Jamshidzadeh A, Niknahad H, Mohammadi H, Sabouri S, Heidari R, et al. N-acetylcysteine treatment blunts liver failure-associated impairment of locomotor activity. PharmaNutrition. 2017;5;141-7. doi: 10.1016/j.phanu.2017.10.003.
46.    Jamshidzadeh A, Heidari R, Latifpour Z, Ommati MM, Abdoli N, Mousavi S, et al. Carnosine ameliorates liver fibrosis and hyperammonemia in cirrhotic rats. Clin Res Hepatol Gastroenterol. 2017 Sep;41(4):424-434. doi: 10.1016/j.clinre.2016.12.010. 
47.    Ommati MM, Heidari R, Manthari RK, Tikka Chiranjeevi S, Niu R, Sun Z, et al. Paternal exposure to arsenic resulted in oxidative stress, autophagy, and mitochondrial impairments in the HPG axis of pubertal male offspring. Chemosphere. 2019 Dec;236:124325. doi: 10.1016/j.chemosphere.2019.07.056. Epub 2019 Jul 15. 
48.    Jamshidzadeh A, Abdoli N, Niknahad H, Azarpira N, Mardani E, Mousavi S, et al. Taurine alleviates brain tissue markers of oxidative stress in a rat model of hepatic encephalopathy. Trend Pharm Sci. 2017;3;181-92. doi.
49.    Ommati MM, Heidari R, Zamiri MJ, Sabouri S, Zaker L, Farshad O, et al. The Footprints of Oxidative Stress and Mitochondrial Impairment in Arsenic Trioxide-Induced Testosterone Release Suppression in Pubertal and Mature F1-Male Balb/c Mice via the Downregulation of 3β-HSD, 17β-HSD, and CYP11a Expression. Biol Trace Elem Res. 2020 May;195(1):125-134. doi: 10.1007/s12011-019-01815-2. 
50.    Jamshidzadeh A, Niknahad H, Heidari R, Azadbakht M, Khodaei F, Arabnezhad MR, et al. Propylthiouracil-induced mitochondrial dysfunction in liver and its relevance to drug-induced hepatotoxicity. Pharm Sci. 2017;23;95-102. doi: 10.15171/PS.2017.15.
51.    Pursel VG, Johnson LA, Rampacek GB. Acrosome morphology of boar spermatozoa incubated before cold shock. J Anim Sci. 1972 Feb;34(2):278-83. doi: 10.2527/jas1972.342278x. PMID: 4551736.
52.    Farshad O, Heidari R, Zamiri MJ, Retana-Márquez S, Khalili M, Ebrahimi M, et al. Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Front Vet Sci. 2020 Dec 17;7:591558. doi: 10.3389/fvets.2020.591558. 
53.    Farshad O, Ommati MM, Yüzügülen J, Jamshidzadeh A, Mousavi K, Ahmadi Z, et al. Carnosine mitigates biomarkers of oxidative stress, improves mitochondrial function, and alleviates histopathological alterations in the renal tissue of cholestatic rats. Pharma Sci. 2020;27;32-45. doi: 10.34172/PS.2020.60.
54.    Ommati M, Zamiri M, Akhlaghi A, Atashi H, Jafarzadeh M, Rezvani M, et al. Seminal characteristics, sperm fatty acids, and blood biochemical attributes in breeder roosters orally administered with sage (Salvia officinalis) extract. Animal Product Sci. 2013;53;548-54. doi: 10.1071/AN12257.
55.    Ommati MM, Manthari RK, Tikka C, Niu R, Sun Z, Sabouri S, et al. Arsenic-induced autophagic alterations and mitochondrial impairments in HPG-S axis of mature male mice offspring (F1-generation): A persistent toxicity study. Toxicol Lett. 2020 Jun 15;326:83-98. doi: 10.1016/j.toxlet.2020.02.013. 
56.    Fonseca JF, Torres CAA, Maffili VV, Borges AM, Santos ADF, Rodrigues MT, et al. The hypoosmotic swelling test in fresh goat spermatozoa. Animal Reproduction. 2005 2;139-44. 
57.    Ommati MM, Heidari R, Zamiri MJ, Shojaee S, Akhlaghi A, Sabouri S. Association of open field behavior with blood and semen characteristics in roosters: an alternative animal model. Rev Int Androl. 2018 Apr-Jun;16(2):50-58. doi: 10.1016/j.androl.2017.02.002. 
58.    Niknahad H, Heidari R, Firuzi R, Abazari F, Ramezani M, Azarpira N, et al. Concurrent Inflammation Augments Antimalarial Drugs-Induced Liver Injury in Rats. Adv Pharm Bull. 2016 Dec;6(4):617-625. doi: 10.15171/apb.2016.076. Epub 2016 Dec 22. PMID: 28101469; PMCID: PMC5241420.
59.    Larrey D. Foie, médicaments et agents chimiques [Hepatotoxicity of drugs and chemicals]. Gastroenterol Clin Biol. 2009 Dec;33(12):1136-46. French. doi: 10.1016/j.gcb.2009.10.003. PMID: 19931994.
60.    Heidari R, Babaei H, Roshangar L, Eghbal MA. Effects of Enzyme Induction and/or Glutathione Depletion on Methimazole-Induced Hepatotoxicity in Mice and the Protective Role of N-Acetylcysteine. Adv Pharm Bull. 2014;4(1):21-8. doi: 10.5681/apb.2014.004. Epub 2013 Dec 23. PMID: 24409405; PMCID: PMC3885364.
61.    Abdoli N, Heidari R, Azarmi Y, Eghbal MA. Mechanisms of the statins cytotoxicity in freshly isolated rat hepatocytes. J Biochem Mol Toxicol. 2013 Jun;27(6):287-94. doi: 10.1002/jbt.21485. Epub 2013 Apr 23. PMID: 23761184.
62.    Heidari R, Babaei H, Eghbal M. Mechanisms of methimazole cytotoxicity in isolated rat hepatocytes. Drug Chem Toxicol. 2013 Oct;36(4):
403-11. doi: 10.3109/01480545.2012.749272. Epub 2012 Dec 21. PMID: 23256569.
63.    Vazin A, Heidari R, Khodami Z. Curcumin Supplementation Alleviates Polymyxin E-Induced Nephrotoxicity. J Exp Pharmacol. 2020 Jun 4;12:129-136. doi: 10.2147/JEP.S255861. PMID: 32581601; PMCID: PMC7280086.
64.    Jamshidzadeh A, Heidari R, Razmjou M, Karimi F, Moein MR, Farshad O, et al. An in vivo and in vitro investigation on hepatoprotective effects of Pimpinella anisum seed essential oil and extracts against carbon tetrachloride-induced toxicity. Iran J Basic Med Sci. 2015 Feb;18(2):205-11. PMID: 25825639; PMCID: PMC4366734.
65.    Karamikhah R, Jamshidzadeh A, Azarpira N, Saeidi A, Heidari R. Propylthiouracil-induced liver injury in mice and the protective role of taurine. Pharm Sci. 2016;21;94-101. doi: 10.15171/PS.2015.23.
66.    Khodaei F, Rashedinia M, Heidari R, Rezaei M, Khoshnoud MJ. Ellagic acid improves muscle dysfunction in cuprizone-induced demyelinated mice via mitochondrial Sirt3 regulation. Life Sci. 2019 Nov 15;237:116954. doi: 10.1016/j.lfs.2019.116954. Epub 2019 Oct 11. PMID: 31610192.
67.    Heidari R, Esmailie N, Azarpira N, Najibi A, Niknahad H. Effect of Thiol-reducing Agents and Antioxidants on Sulfasalazine-induced Hepatic Injury in Normotermic Recirculating Isolated Perfused Rat Liver. Toxicol Res. 2016 Apr;32(2):133-40. doi: 10.5487/TR.2016.32.2.133. Epub 2016 Apr 30. PMID: 27123164; PMCID: PMC4843982.
68.    Heidari R, Jamshidzadeh A, Keshavarz N, Azarpira N. Mitigation of Methimazole-Induced Hepatic Injury by Taurine in Mice. Sci Pharm. 2014 Sep 30;83(1):143-58. doi: 10.3797/scipharm.1408-04. PMID: 26839807; PMCID: PMC4727863.
69.    Najafi H, Abolmaali SS, Heidari R, Valizadeh H, Jafari M, Tamaddon AM, et al. Nitric oxide releasing nanofibrous Fmoc-dipeptide hydrogels for amelioration of renal ischemia/reperfusion injury. J Control Release. 2021 Sep 10;337:1-13. doi: 10.1016/j.jconrel.2021.07.016. Epub 2021 Jul 14. PMID: 34271033.
70.    Heidari R, Ahmadi A, Ommati MM, Niknahad H. Methylene blue improves mitochondrial function in the liver of cholestatic rats. Trend Pharm Sci. 2020;6;73-86. doi: 10.30476/tips.2020.85961.1043.
71.    Heidari R, Jamshidzadeh A, Niknahad H, Mardani E, Ommati MM, Azarpira N, et al. Effect of taurine on chronic and acute liver injury: Focus on blood and brain ammonia. Toxicol Rep. 2016 Apr 13;3:870-879. doi: 10.1016/j.toxrep.2016.04.002. PMID: 28959615; PMCID: PMC5615919.
72.    Abdoli N, Sadeghian I, Mousavi K, Azarpira N, Ommati MM, Heidari R. Suppression of cirrhosis-related renal injury by N-acetyl cysteine. Curr Res Pharmacol Drug Discov. 2020 Oct 13;1:30-38. doi: 10.1016/j.crphar.2020.100006. PMID: 34909640; PMCID: PMC8663932.
73.    Ghanbarinejad V, Ommati MM, Jia Z, Farshad O, Jamshidzadeh A, Heidari R. Disturbed mitochondrial redox state and tissue energy charge in cholestasis. J  Biochem  Molecul Toxicol. 2021;35;e22846. doi: 10.1002/jbt.22846.
74.    Ommati MM, Heidari R, Jamshidzadeh A, Zamiri MJ, Sun Z, Sabouri S, et al. Dual effects of sulfasalazine on rat sperm characteristics, spermatogenesis, and steroidogenesis in two experimental models. Toxicol Lett. 2018 Mar 1;284:46-55. doi: 10.1016/j.toxlet.2017.11.034. Epub 2017 Dec 22. PMID: 29197623.
75.    Ghanbarinejad V, Jamshidzadeh A, Khalvati B, Farshad O, Li H, Shi X, et al. Apoptosis-inducing factor plays a role in the pathogenesis of hepatic and renal injury during cholestasis. Naunyn Schmiedebergs Arch Pharmacol. 2021 Jun;394(6):1191-1203. doi: 10.1007/s00210-020-02041-7. Epub 2021 Feb 1. PMID: 33527194.
76.    Mousavi K, Manthari RK, Najibi A, Jia Z, Ommati MM, Heidari R. Mitochondrial dysfunction and oxidative stress are involved in the mechanism of tramadol-induced renal injury. Curr Res Pharmacol Drug Discov. 2021 Sep 3;2:100049. doi: 10.1016/j.crphar.2021.100049. 
77.    Najibi A, Rezaei H, Manthari RK, Niknahad H, Jamshidzadeh A, Farshad O, et al. Cellular and mitochondrial taurine depletion in bile duct ligated rats: a justification for taurine supplementation in cholestasis/cirrhosis. Clin Exp Hepatol. 2022 Sep;8(3):195-210. doi: 10.5114/ceh.2022.119216. 
78.    Ommati MM, Hojatnezhad S, Abdoli N, Manthari RK, Jia Z, Najibi A, et al. Pentoxifylline mitigates cholestasis-related cholemic nephropathy. Clin Exp Hepatol. 2021 Dec;7(4):377-389. doi: 10.5114/ceh.2021.111014. Epub 2021 Nov 25. 
79.    Hanidziar D, Robson SC. Synapomorphic features of hepatic and pulmonary vasculatures include comparable purinergic signaling responses in host defense and modulation of inflammation. Am J Physiol Gastrointest Liver Physiol. 2021 Aug 1;321(2):G200-G212. doi: 10.1152/ajpgi.00406.2020. 
80.    Zecca E, De Luca D, Marras M, Caruso A, Bernardini T, Romagnoli C. Intrahepatic cholestasis of pregnancy and neonatal respiratory distress syndrome. Pediatrics. 2006 May;117(5):1669-72. doi: 10.1542/peds.2005-1801. PMID: 16651322.
81.    Heidari R, Abdoli N, Ommati MM, Jamshidzadeh A, Niknahad H. Mitochondrial impairment induced by chenodeoxycholic acid: The protective effect of taurine and carnosine supplementation. Trend Pharm Sci. 2018;4. 
82.    Mikolka P, Kosutova P, Kolomaznik M, Topercerova J, Kopincova J, Calkovska A, et al. Effect of different dosages of dexamethasone therapy on lung function and inflammation in an early phase of acute respiratory distress syndrome model. Physiol Res. 2019 Dec 20;68(Suppl 3):S253-S263. doi: 10.33549/physiolres.934364. PMID: 31928043.
83.    Mokra D, Mokry J, Drgova A, Bulikova J, Petraskova M, Calkovska A. Single-dose versus two-dose dexamethasone effects on lung inflammation and airway reactivity in meconium-instilled rabbits. J Physiol Pharmacol. 2007 Nov;58 Suppl 5(Pt 1):379-87. PMID: 18204150.
84.    Villar J, Añón JM, Ferrando C, Aguilar G, Muñoz T, Ferreres J, et al. Efficacy of dexamethasone treatment for patients with the acute respiratory distress syndrome caused by COVID-19: study protocol for a randomized controlled superiority trial. Trials. 2020 Aug 16;21(1):717. doi: 10.1186/s13063-020-04643-1. 
85.    Villar J, Belda J, Añón JM, Blanco J, Pérez-Méndez L, Ferrando C, et al. Evaluating the efficacy of dexamethasone in the treatment of patients with persistent acute respiratory distress syndrome: study protocol for a randomized controlled trial. Trials. 2016 Jul 22;17:342. doi: 10.1186/s13063-016-1456-4. 
86.    Dik WA, McAnulty RJ, Versnel MA, Naber BA, Zimmermann LJ, Laurent GJ, et al. Short course dexamethasone treatment following injury inhibits bleomycin induced fibrosis in rats. Thorax. 2003 Sep;58(9):765-71. doi: 10.1136/thorax.58.9.765. 
87.    Xu T, Qiao J, Zhao L, He G, Li K, Wang J, Tian Y, Wang H. Effect of dexamethasone on acute respiratory distress syndrome induced by the H5N1 virus in mice. Eur Respir J. 2009 Apr;33(4):852-60. doi: 10.1183/09031936.00130507. 
88.    Ramos-Tovar E, Muriel P. Molecular Mechanisms That Link Oxidative Stress, Inflammation, and Fibrosis in the Liver. Antioxidants (Basel). 2020 Dec 15;9(12):1279. doi: 10.3390/antiox9121279. 
89.    Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev. 2016;2016:5698931. doi: 10.1155/2016/5698931. Epub 2016 Jan 5. 
90.    Schaaf MJ, Cidlowski JA. Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol. 2002 Dec;83(1-5):37-48. doi: 10.1016/s0960-0760(02)00263-7. PMID: 12650700.
91.    Newton R. Molecular mechanisms of glucocorticoid action: what is important? Thorax. 2000 Jul;55(7):603-13. doi: 10.1136/thorax.55.7.603. 
92.    Mak JC, Nishikawa M, Barnes PJ. Glucocorticosteroids increase beta 2-adrenergic receptor transcription in human lung. Am J Physiol. 1995 Jan;268(1 Pt 1):L41-6. doi: 10.1152/ajplung.1995.268.1.L41. PMID: 7840227.
93.    Chung E, Ojiaku CA, Cao G, Parikh V, Deeney B, Xu S, et al. Dexamethasone rescues TGF-β1-mediated β2-adrenergic receptor dysfunction and attenuates phosphodiesterase 4D expression in human airway smooth muscle cells. Respir Res. 2020 Oct 8;21(1):256. doi: 10.1186/s12931-020-01522-w.