Development and Evaluation of Metronidazole Microspheres using Starch Isolates of Maize Genotypes as Sustained Release Polymer

Document Type : Original Article

Authors

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Olabisi Onabanjo University, Nigeria.

Abstract

Genetic engineering of maize plants for improved yield, drought and pest resistance has received considerable attention in agricultural research. This work aims to develop metronidazole microspheres using starches obtained from genetically modified maize cultivars as controlled release polymers. Metronidazole microspheres were prepared by ionotropic gelation method using polymer blend of starches (A and B) isolated from genetically modified maize grains and sodium alginate. The microspheres were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). A 32 factorial design was employed using the entrapment efficiency, time taken for 50% (T50) and 90 % (T90) drug release as dependent variables while A, B and polymer-drug ratio were independent variables. SEM reveals that the formulations are polyhedral, hard and discrete with a smooth surface. Metronidazole microspheres formulations containing starch isolates from maize genotypes had significantly higher (p<0.05) entrapment efficiency. Formulations containing a blend of starch and alginate showed a more sustained release than the formulations having only alginate. Values of T90 ranged between 6.12±3.20 to 47.13±7.01 hrs suggesting a sustained release of the drug. Generally, drug release from the microspheres was through erosion and polymer relaxation The effect of type of polymer on the dissolution times was more significant (p<0.05) than those of polymer: drug ratio. This result shows that starches obtained from genetically modified maize grains can be employed as sustained release polymers in the formulation of metronidazole microspheres. 

Keywords


1.    Okunlola A, Ghomorai T. Development of ibuprofen microspheres using acetylated plantain starches as polymer for sustained release. J Pharm Investig. 2018;48:551-564. doi 10.1007/s40005-017-0345-5
2.    Nagpal M, Maheshwari D, Rakha P, Dureja H, Goyal S, Dhingra G. Formulation development and evaluation of alginate microspheres of Ibuprofen. J Young Pharm. 2012 Jan;4(1):13-6. doi: 10.4103/0975-1483.93573. PMID: 22523454; PMCID: PMC3326775.
3.    Jiménez-Gómez CP, Cecilia JA. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules. 2020 Sep 1;25(17):3981. doi: 10.3390/molecules25173981. PMID: 32882899; PMCID: PMC7504732.
4.    Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, et al. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021 Dec;28(1):1397-1418. doi: 10.1080/10717544.2021.1938756. PMID: 34184949; PMCID: PMC8248937.
5.    Karan S, Debnath S, Kuotsu K, Chatterjee TK. In-vitro and in-vivo evaluation of polymeric microsphere formulation for colon targeted delivery of 5-fluorouracil using biocompatible natural gum katira. Int J Biol Macromol. 2020 Apr 23;158:922-936. doi: 10.1016/j.ijbiomac.2020.04.129. Epub ahead of print. PMID: 32335117. 
6.    Fan Y, Picchioni F. Modification of starch: A review on the application of "green" solvents and controlled functionalization. Carbohydr Polym. 2020 Aug 1;241:116350. doi: 10.1016/j.carbpol.2020.116350. Epub 2020 Apr 29. PMID: 32507175.
7.    Fang YY, Wang LJ, Li D, Li BZ, Bhandar B, Chen XD, Mao ZH. Preparation of cross linked starch microspheres and their drug loading and releasing properties. Carbohydr Polym. 2008;74:379-384. doi.org/10.1016/j.carbpol.2008.03.005
8.    Li BZ, Wang LJ, Li D, Bhandari B, Li SJ, Lan Y, Chen XD, Mao ZH. Fabrication of starch-based microparticles by an emulsification-cross linking method. J Food Eng. 2009;92:250-254. doi.org/10.1016/j.jfoodeng.2008.08.011
9.    Manu N, Opit GP , Osekre EA, Arthur FH, Mbata G, Armstrong P, Danso JK, McNeill SG, Campbell JF. Moisture content, insect pest infestation and mycotoxin levels of maize in markets in the northern region of Ghana. J Stored Prod Res. 2019;80:10-20. doi.org/10.1016/j.jspr.2018.10.007
10.    Rima K, Dima M, Cherine S, Paolo Y. Encapsulation of metronidazole in polycaprolactone microspheres. J Drug Del Therapeutics. 2019;9(1):190-194. doi.org/10.22270/jddt.v9i1.2306
11.    Beaumont M, Tran R, Vera G, Niedrist D, Rousset A, Pierre R, Shastri VP, Forget A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules. 2021 Mar 8;22(3):1027-1052. doi: 10.1021/acs.biomac.0c01406. Epub 2021 Feb 12. PMID: 33577286; PMCID: PMC7944484.
12.    Itiola OA, Odeku OA. Packing and cohesive properties of some locally extracted starches. Trop J Pharm Res. 2005;4:363-368. doi.org/10.4314/tjpr.v4i1.14621
13.    Bakre LG, Adegbesan AD, Bamiro OA, Olayemi B, Kunle O.O. Effect of genetic modification of maize plant on the pharmaceutically important properties of its starch. Malays J Pharm Sci. 2021;19 (2):61-72.
14.    Bakre LG, Ogun O, Alayo MA. Influence of pregelatinization on the physicochemical and compressional characteristics of starches derived from two local varieties of Dioscorea rotundata.  IOSR J Pharmacy. 2014;4 (6):24-32.
15.    Bakre LG, Osibajo DJ, Koiki AG, Bamiro OA. Material, compressional and tableting properties of Ipomea batatas (sweet potato) starch co-processed with silicon dioxide. Acta Pharm Sci. 2019;57 (4):21-37. doi 10.23893/1307-2080.APS.05722
16.    Higuchi T. Mechanism of sustained action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci. 1963 Dec;52:1145-9. doi: 10.1002/jps.2600521210. PMID: 14088963.
17.    Ritger R, Peppas NA. A simple equation for disposition of solute release - II. J Control Release. 1987;5:37-42. 
18.    Xu G, Sunada H. Influence of formulation change on drug release kinetics from hydroxypropylmethylcellulose matrix tablets. Chem Pharm Bull (Tokyo). 1995 Mar;43(3):483-7. doi: 10.1248/cpb.43.483. PMID: 7774032. 
19.    Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2001 Jun 11;48(2-3):139-57. doi: 10.1016/s0169-409x(01)00112-0. PMID: 11369079. 
20.    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanism of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25-35. 
21.    Sacco P, Pedroso-Santana S, Kumar Y, Joly N, Martin P, Bocchetta P. Ionotropic Gelation of Chitosan Flat Structures and Potential Applications. Molecules. 2021 Jan 27;26(3):660. doi: 10.3390/molecules26030660. PMID: 33513925; PMCID: PMC7865838.
22.    Odeku OA, Aderogba AA, Ajala TO, Akin-Ajani OD, Okunlola A. Formulation of floating metronidazole microspheres using cassava starch (Manihot esculenta) as polymer. J Pharm Investig. 2017;47:445-451. doi 10.1007/s40005-017-0319-7
23.    Trivedi MK, Patil S, Shettigar H, Bairwa K, Jana S. Spectroscopic characterization of Biofield treated metronidazole and tinidazole. Med Chem. 2015;5:340-344. doi: 10.4172/2161-0444.1000283
24.    Wang J, Wang BM, Schwendeman SP. Characterization of the initial burst release of a model peptide from poly(D,L-lactide-co-glycolide) microspheres. J Control Release. 2002 Aug 21;82(2-3):289-307.