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Abstract
 Dichloroacetate (DCA) is a pyruvate mimetic compound that stimulates the activity of the en-
zyme pyruvate dehydrogenase (PDH) through inhibition of the enzyme pyruvate dehydrogenase kinases 
(PDK1-4). DCA works by turning on the apoptosis which is suppressed in tumor cells, hence letting them 
die on their own. Here, in this paper a series of DCA analogues were applied to quantitative structure–ac-
tivity relationship (QSAR) analysis. A collection of chemometric methods such as multiple linear regres-
sion (MLR), factor analysis-based multiple linear regression (FA-MLR), principal component regression 
(PCR), simple Free-Wilson analysis (FWA) and partial least squared combined with genetic algorithm for 
variable selection (GA-PLS), were conducted to make relations between structural features and cytotoxic 
activities of a variety of DCA derivatives. The best multiple linear regression equation was obtained from 
genetic algorithms partial least squares which predicted 91% of variances. On the basis of the produced 
model, an in silico-screening study was also employed and new potent lead compounds based on new 
structural patterns were suggested. Docking studies of these compounds were also investigated and prom-
ising results were obtained. The docking results were also conducted to protein ligand interaction finger-
prints (PLIF) studies, using self-organizing map (SOM) in order to evaluate the predictive ability in sug-
gesting new potent compounds and some compounds were introduced as a good candidate for synthesis.

Keywords: In silico screening, Molecular docking, N-phenyl dichloroacetamide, Protein ligand interaction 
fingerprints, QSAR..................................................................................................................................

1. Introduction
 Recently the tumor metabolism and the 
Warburg effect have attracted scientists’ interest in 
the fields of mitochondrial function and oncogen-
ic regulation of metabolism (1). Some metabolic 
pathways such as programmed cell death, that play 
a great role in tumor growth are being introduced 
as novel targets for anticancer drug development 
(2, 3). To the best of our knowledge apoptosis 
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Corresponding Author: Mehdi Khoshneviszadeh, Department of Me-
dicinal Chemistry, School of Pharmacy, Shiraz University of Medical 
Sciences, Shiraz, Iran.
Email: khoshnevim@sums.ac.ir

Recieved:12/05/2016; Accepted:27/05//2016

Original Article

and the mechanisms evolved by tumor cells to re-
frain from engagement in cell death, are compli-
cated processes. Pyruvate dehydrogenase complex 
(PDC), is one of the major regulators of mitochon-
drial function. The activity of PDC is regulated 
by reversible phosphorylation of three serine 
residues on the E1α subunit. PDH kinases (PDK) 
phosphorylate these sites. There are four known 
isoforms of PDKs (PDK1-4) that are distributed 
in a different manner in tissues. PDKs are novel 
therapeutic targets in the treatment of cancer (2, 4).
 Dichloroacetate (DCA) is a lactate-lower-
ing drug which has been in use for many years to 
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treat various diseases such as lactic acidosis and 
inherited defects in mitochondrial metabolism (5). 
In 2007 it was discovered that DCA induces the 
death of human lung, breast and brain cancer cells 
that were embedded into rats, while being non-
toxic to healthy cells (6). Current studies show 
that sodium dichloroacetate (DCA) can selectively 
promote mitochondria-regulated apoptosis, depo-
larizing the hyperpolarized inner mitochondrial 
membrane potential to normal levels, inhibit tu-
mor growth and reduce proliferation by shifting 
the glucose metabolism in cancer cells from an-
aerobic to aerobic glycolysis (2, 4). 
 Expressing biological activity quantita-
tively  is of  great importance in the field of medic-
inal chemistry. Moreover, having expressed struc-
tures or physicochemical properties by numbers, a 
mathematical relationship can be found between 
the two. The mathematical expression, if carefully 
validated can then be used to predict the modeled 
response of other chemical structures. In the field 
of drug design and medicinal chemistry the QSAR 
information have great importance (7). There are 
different variable selection methods such as multi-
ple linear regression (MLR), principal component 
or factor analysis (PCA⁄FA), genetic algorithm, 
and so on available for QSAR studies (8).
 Here, QSAR studies of a series of N-phe-
nyl dichloroacetamide derivatives with great cy-
totoxic activity against different cancer cell lines, 
which have been recently designed and synthe-
sized by Y. Yang et al. (9) have been explored. Re-
cently the cytotoxic activity of some of these com-
pounds against different cell lines such as human 
lung (NCI-H460), colon (HCA-7) and endometrial 
(MCF-7) cancer cell lines was also evaluated (10). 
Among different QSAR models, the best multiple 
linear regression equation was obtained from GA-
PLS models which was a linear seven-parameter 
model. Thereafter, a virtual screening study was 
employed to determine novel biologically active 
patterns by insertion, deletion and substitution of 
different substitutes of the primary molecules. The 
results of this study led to the identification of nov-
el structures, which are potent anticancer agents 
according to the QSAR model. It should also be 
mentioned that docking and PLIF studies of these 
compound were also carried out and  promising re-

sults were obtained. There was a good correlation 
between the results of docking and QSAR studies. 

2. Materials and Methods
2.1. Data set
 The biological data used in this paper are 
the cytotoxic activity of a series of N-phenyl di-
chloroacetamide derivatives on a human nonsmall 
cell lung cancer cell line (A549), which were de-
signed, synthesized and evaluated for their ability 
to induce apoptosis by Yang et al. (9). The struc-
tural features and biological activities of these 
compounds are listed in Table 1. The biological 
data were converted to logarithmic scale (pIC50) 
and then used for subsequent QSAR analysis as 
dependent variables.

2.2. Molecular descriptors 
 The two dimensional structures of the li-
gands were drawn using ACD chemsketch soft-
ware. Then the ligands were subjected to minimi-
zation procedures by means of an in house TCL 
script using Hyperchem (Version 8, Hypercube 
Inc., Gainesville, FL, USA). Each ligand was op-
timized with different minimization methods such 
as commonly used molecular mechanics method 
(MM+) and then quantum based semiemprical 
method (AM1) by using Hyperchem package. The 
Z-matrices of the structures were constructed by 
the software and then transferred to the Gaussian 
98 program (11). HyperChem, Gaussian 98 and 
Dragon softwares (12) were used for calculation 
of molecular descriptors. Highest occupied mo-
lecular orbital (HOMO) and lowest unoccupied 
molecular orbital (LUMO) energies and molecu-
lar dipole moment were calculated by Gaussian 
98. Quantum chemical indices of hardness (η=0.5 
(HOMO+LUMO)); softness (S=1⁄η); electronega-
tivity (χ=-0.5 (HOMO-LUMO)); and electrophi-
licity (ω=χ2⁄2η) were calculated according to the 
equations proposed by Thanikaivelan et al. (13). 
Some chemical parameters including molar vol-
ume (V), molecular surface area (SA), hydropho-
bicity (logP), hydration energy (HE) and molecular 
polarizability were calculated using Hyperchem 
software. Dragon calculated different topological, 
geometrical, charge, empirical and constitutional 
descriptors for each molecule. 2D autocorrelations, 
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Table 1. Chemical structure of the N-phenyl-2,2-dichloroacetamide analogues used in this study and their experi-
mental and cross-validated predicted activity (by GA-PLS) for cytotoxic activity as well as their docking binding 
energies.
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1 2a-e 3a-m 4a-i 5a-c

Name R Exp.pIC50 Pred. pIC50
a Binding Energy (kcal/mol)

1 - 3.88605 4.08685 -4.75
2a F 4.05784 4.03370 -5.25
2b Cl 4.29973 4.14783 -5.42
2c Br 4.43191 4.22958 -5.56
2d NO2 3.7043 3.90310 -4.51
2e NHCOCHCl2 3.88292 4.21780 -4.73
3a CH3 4.38668 4.30985 -5.54
3b Cl 4.83032 4.85377 -5.78
3c Br 5.1079 5.11930 -5.89
3d I 5.32239 5.31882 -6.12
3e CN 4.17698 4.91989 -5.31
3f 4.95 4.93897 -5.81
3g NO2 4.74376 4.65637 -5.66
3h OCH3 4.58871 4.61296 -5.51
3i CF3 4.91435 4.62387 -5.82
3j OCF3 4.82246 4.67821 -5.73
3k SCF3 4.8517 4.98226 -5.77
3l SO2CF3 5.18508 5.16325 -5.87
3m SO2Ph(m-NHCOCHCl2) 5.22988 4.57566 -6.03
4a CH3 4.31051 4.28693 -5.57
4b F 4.16488 4.27381 -5.3
4c Cl 4.691 4.60795 -5.59
4d Br 4.86201 4.79344 -5.69
4e I 4.9017 4.94087 -5.67
4f NO2 4.46319 4.74464 -5.37
4g OCH3 4.09216 4.15534 -5.27
4h SCF3 4.976336 4.76654 -5.91
4i SO2CF3 5.070581 5.06627 -5.72
5a 4Cl 5.29328 5.19766 -5.66
5b 5Cl 5.35654 5.40682 -6.05
5c 6Cl 4.90728 4.85008 -5.54

aCross-validated prediction by GAPLS.

C CH≡

aromaticity indices, atom-centered fragments and 
functional groups were also calculated by dragon.

 In the case of docking procedure, each li-
gand was optimized with different minimization 
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MM+ then AM1 using HyperChem 8. The output 
structures were thereafter converted to PDBQT us-
ing MGLtools 1.5.6 (14). The three dimensional 
crystal structure of pyrvuate dehydrogenase kinase 
2 (PDB ID:2BU8) were retrieved from protein 
data bank (15). Co-crystal ligand molecules were 
excluded from the structures and the PDBs were 
corrected in terms of missing atom types by mod-
eller 9.12 (16). An in house application (MODEL-
FACE) was used for generation of python script 
and running modeller software. Subsequently, the 
enzymes were converted to PDBQT and gasteiger 
partial charges were added using MGLTOOLS 
1.5.6.

2.3. Model development
 Four different regression methods were 
conducted for constructing QSAR equations:(1) 
simple multiple linear regression with stepwise 
variable selection (MLR) (2) factor analysis as the 
data preprocessing step for variable selection (FA-
MLR), (3) principal component regression analy-
sis (PCRA), and (4) genetic algorithm–partial least 
squares (GA-PLS). Simple Free-Wilson analysis 
(FWA) was also carried out. These methods are 
well substantiated in the QSAR studies, and there-
fore, these methods are described briefly.
 Stepwise regression is a semi-automated 
process of building a model by successively adding 
or removing variables, based solely on the t-statis-
tics of their estimated coefficients. In stepwise re-
gression (17), a multiple-term linear equation was 
constructed step by step. The basic procedures in-
clude (i) recognizing a primary model, (ii) itera-
tively ‘stepping’, that is, repetitively changing the 
model at the prior step by adding or removing a 
predictor variable in accordance with the ‘stepping 
criteria’ (in our case, probability of F=0.05 for in-
clusion; probability of F=0.1 for leaving out for 
the forward selection method), and (iii) terminat-
ing the search when stepping is no longer possible 
given the stepping criteria, or when a known max-
imum number of steps have been obtained. Par-
ticularly, at each step, for determining which one 
will contribute most to the equation, all variables 
are reviewed for evaluation (17). The variable 
will then be applied in the model, and the process 

starts again. A limitation of the stepwise regression 
search approach is that it assumes there is a single 
‘best’ subset of X variables and searches to iden-
tify it. There is often no unique ‘best’ subset, and 
whole possible regression models with a similar 
number of X variables as in the stepwise regres-
sion solution should be fitted subsequently to ex-
plore whether some other subsets of X variables 
might be better (18). Here in this study, MLR with 
stepwise selection and elimination of variables 
was applied for developing QSAR models using 
SPSS software (version 21; SPSS Inc., IBM, Chi-
cago, IL, USA). Using MATLAB 2015 software 
(version 8.5; Math work Inc., Natick, MA, USA), 
the resulted models were validated by leave-one-
out cross-validation procedure to check their pre-
dictivity and robustness.
 In the FA-MLR method, although classi-
cal approach of multiple regression technique was 
applied as the final statistical tool for developing 
QSAR relation, factor analysis (FA) (8, 17) was 
used as the data-preprocessing step to identify 
the important predictor variables contributing to 
the response variable and to avoid collinearities 
among them. In a typical factor analysis procedure, 
standardizing the data matrix then correlation ma-
trix is constructed. An eigenvalue problem is then 
solved and the factor pattern can be acquired from 
the corresponding eigenvectors (characteristic 
vector). The principal objectives of factor analy-
sis (FA) are to display multidimensional data in a 
space of lower dimensionality with minimum loss 
of information (explaining >95% of the variance 
of the data matrix) and to extract the basic features 
behind the data with ultimate goal of interpretation 
or prediction. Factor analysis was done on the data 
set, containing biological activity and all descriptor 
variables, which were to be considered. The fac-
tors were extracted by principal component meth-
od and then rotated by VARIMAX rotation (19).
 Along with FA-MLR, PCRA was also 
tried for the data set. In this method (8, 17), factor 
scores obtained from FA are used as the predictor 
variables. PCRA has a benefit that collinearities 
among X variables are not a disturbing factor and 
that the number of variables included in the analy-
sis may exceed the number of observations (20). 
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While the main purpose of FA-MLR is to identify 
relevant descriptors, in PCRA all descriptors are 
supposed to be important.
 Genetic algorithms (GA) generate solu-
tions to optimization problems using techniques 
inspired by natural evolution, such as inheritance, 
mutation, selection, and crossover. 
 Partial least square (PLS) is a generaliza-
tion of regression, that can handle data with force-
fully correlated and or numerous X variables (21). 
It gives reduced solution, which is statistically 
more robust and reliable than MLR. The linear 
PLS model finds ‘new variables’ (latent variables 
or X scores) that are linear combination of the 
original variables. To avoid overfitting, a strict test 
for the significance of each consecutive PLS com-
ponent is necessary and then stopping when the 
components are non-significant. Cross-validation 
is a practical and credible method of testing this 
significance (22). Application of PLS thus allows 
the construction of larger QSAR equations while 
still avoiding overfitting and eliminating most 
variables. Usually, PLS is applied in combination 
with cross-validation to obtain the optimum num-
ber of components (17, 23, 24). In the GA-PLS 
procedure, in addition to the best set of descrip-
tors, the optimum number of concealed variables 
must be determined. Here, for each subset of de-
scriptors (i.e., for each chromosome of the GA), 
a PLS model was developed separately and there-
fore the number of latent variables was optimized. 
The PLS regression method was applied based on 
the NIPALS-based algorithm existing in the che-
mometrics toolbox of MATLAB software. Leave-
one-out cross-validation procedure was used to 
obtain the optimum number of factors based on the 
Haaland and Thomas F-ration criterion (17, 25). 
The MATLAB PLS toolbox developed by eigen-
vector company was used for PLS and GA model-
ing. All calculations were run on a core i7 personal 
computer (CPU at 6 MB) with Windows 7 as the 
operating system.

2.4. Model validation
 Statistical parameters including correla-
tion coefficient (R2), standard error of regression 
(SE), and variance ratio (F) at specified degrees of 
freedom were used for validating the goodness-of-

fit of the resulted QSAR models. The generated 
QSAR equations were also validated by leave-
one-out cross-validation correlation coefficient 
(Q2), root mean square error of cross-validation 
(RMScv) and cross validation cross validation 
(Cvcv). According to Tropsha et al. (26) the pre-
dictive ability of a QSAR model should be tested 
on an external set of data that has not been taken 
into account during the process of developing the 
model. Therefore, as it was shown in Table 1, an 
external test set, composed of 6 randomly selected  
molecules (for example 3a, 3d, 3g, 3m, 4f and 5a) 
was applied to determine the overall prediction 
ability of the resulted models. It should be empha-
sized that we carried out each QSAR model with 
more than 3 test sets and the best equation was 
considered as the best model.

2.5. Applicability domain 
 One of the great uses of a QSAR model 
is based on its precise prediction ability for new 
compounds. A model validation is just within its 
training domain, and new compounds must be 
appraised as belonging to the domain before the 
model is applied. The applicability domain is ap-
praised by the leverage values for each compound. 
A Williams plot (the plot of standardized residuals 
versus leverage values (h)) can then be used for an 
immediate and simple graphical detection of both 
response outliers (Y outliers) and structurally in-
fluential chemicals (X outliers) in our model. In 
this graph, the applicability domain is established 
inside a squared area within±x (standard devia-
tions) and a leverage threshold h*. The threshold 
h* is generally fixed at 3(k+1)⁄n (k is the number 
of model parameters and n is the number of train-
ing set compounds), whereas x is normally equal 
to 2 or 3. Prediction must be considered unreliable 
for compounds with a high leverage value (h>h*). 
From the other point of view, when the leverage 
value of a compound is lower than the threshold 
value, the probability of agreement between ob-
served and predicted values is as high as that for 
the training set compounds (7, 27).

2.6. Docking procedure 
 The docking simulations were carried 
out by means of an in house batch script (DOCK-
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FACE) for automatic running of AutoDock 4.2 
(28) in a parallel mode, using all system resources. 
In all experiments Genetic algorithm search meth-
od was used to find the best pose of each ligand in 
the active site of the target enzyme. Random orien-
tations of the conformations were generated after 
translating the center of the ligand to a specified 
position within the receptor active site, and mak-
ing a series of rotamers. This process was recur-
sively repeated until the desired number of low-
energy orientations was obtained. No attempt was 
made to minimize the ligand-receptor complex 
(rigid docking). Ligands were submitted to 100 in-
dependent genetic algorithm (GA) runs for search. 
For Lamarckian GA method, 150 population size, 
a maximum number of 2,500,000 energy evalua-
tions and 27,000 maximum generations were used. 
A grid of 50, 50, and 50 points in x-, y-, and z-
direction, respectively, for PDK2 receptor (2BU8) 
with grid spacing of 0.375 A° was built, centered 
on the catalytic site of the receptors. No. of points 

in x, y and z was 51, 44 and 82 respectively. 

2.7. Protein ligand interaction fingerprint (PLIF)
 In order to perform PLIF studies on dock-
ing results, the poses of docking were extracted 
from dlg files using an in house vb.net application 
(preAuposSOM) (29). The resulted pdbqts and the 
receptor were converted to mol2 using OpenBabel 
2.3.1. The resulted mol2 files were submitted to 
AuposSOM 2.1 web server (30-32). Two training 
phases with 1000 iterations were set in the self-
organizing map settings of AuposSOM conf files. 
Other parameters of the software remained as de-
fault. The output files were subjected to Dendro-
scope 3.2.10 for visualization of the results (33, 34). 

3. Results and Discussion
 In this paper, we executed a detailed QSAR 
study using a combination of chemical, electronic, 
substituent constant, and Free-Wilson analysis 
to explore structural parameters affecting cyto-

Table 2. The results of different QSAR model analysis with different type of dependent variables.
Eq.no. Equation na R2c Q2 Rmscv Cvcv F SE R2p

1) MLR pIC50=-2.019 
MATS5p(±0.237)-0.043 

DipX(±0.039)+0.261 
nCaR(±0.044)+1.238 
ASP(±0.20)+0.688 
IC2(±0.188)+1.196 

ATS7e(±0.366)-0.166(±0.930)

24 0.94 0.91 0.128 2.68 60.4 0.11 0.672

2) FA-MLR pIC50=-0.742 
MATS5p(±0.371)-0.237 

DipX(±0.039)+0.206 
logP (±0.043)+0.407 

ATS7v (±0.060)+0.700 
MATS7p (±0.296)+0.65 

X4Av(±0.104)+3.305(±0.206)

24 0.91 0.87 0.168 3.79 24.9 0.29 0.697

3) PCR pIC50=0.270 
FAC3(±0.038)+0.170 
FAC2(±0.038)+0.139 
FAC11(±0.038)+0.132 
FAC12(±0.038)-0.111 
FAC14(±0.038)-0.105 
FAC9 (±0.038)+0.098 
FAC1(±0.038)-0.088 

FAC13(±0.038)+4.660(±0.037) 

24 0.94 0.90 0.157 3.38 36.5 0.25 0.695

4) GA-PLS pIC50=-0.209 
DipX(±0.025)+0.085 
HE(±0.085)+1.303 

MATS7v(±0.166)-0.361 
C-040(±0.066)+2.140 
ATS7v(±0.213)+1.137 

ATS2e(±0.379)+3.073(±0.465)

24 0.98 0.94 0.106 2.30 117 0.07 0.91

aNumber of molecules of training set used to derive the QSAR models.
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toxic activity of N-phenyl dichloroacetamide de-
rivatives. Among the different chemometric tools 
available for modeling the relationship between 
the biological activity and molecular descrip-
tors, four methods (i.e., stepwise MLR, FA-MLR, 
PCRA, and GA-PLS) were applied and compared 
here. FWA were also performed. A comparison be-
tween stepwise FA-MLR  and MLR will indicate 
which variable selection method (stepwise or FA) 
is well suited for MLR, whereas a comparison be-
tween FA-MLR and PCRA reveals for modeling 
of the studied biological activities, using original 
descriptors selected, based on factor loading or us-
ing the factor scores calculated based on all calcu-
lated descriptors, results in a more suitable model. 
Eventually, GA-PLS, which is assumed to pro-
duce the most useful model, was employed, and 
its results were compared with the other employed 
models.

3.1. MLR modeling
 Firstly, separate stepwise selection-based 
MLR analyses were performed using different 
types of descriptors, and then, a MLR equation 
was obtained utilizing the pool of all calculated 
descriptors. As there are 31 molecules in the train-
ing set and according to the rule of thumb (the ra-
tio of 5:1 for molecule⁄variable⁄Toplis ratio), MLR 
models with maximum number of variables of 6 
were selected. Statistical parameters such as cor-
relation coefficient (R2), correlation coefficient 
(R2test set) of test set, standard error of regression 
(SE), and variance ratio (F ) at specified degrees of 
freedom, leave-one-out cross-validation correla-
tion coefficient (Q2), cross validation cross valida-
tion (Cvcv) and root mean square error of cross-
validation (RMScv) were used for validating the 

goodness-of-fit of the resulted MLR equations. As 
it was shown in Table 2, Equation 1 was selected 
as the best equation in the MLR model because 
of its greatest statistical parameters. The selected 
variables demonstrate that quantum (DipX), topo-
logical (IC2), geometrical (ASP), 2D autocorrela-
tions (MATS5p, ATS7e), and functional (nCaR) 
descriptors affect the cytotoxic activity of the stud-
ied compounds.
 A small difference between the conven-
tional and cross-validate correlation coefficients 
of the different MLR equations (Table 3) reveals 
that none of the models are overfitted, which can 
be partially attributed to the absence of collinear-
ity between the variables in one hand and use of 
no extra variables on the other hand. The correla-
tion coefficient (r2) matrix for the descriptors used 
in MLR Equation 1 (as the best equation in this 
series) shows that no significant correlation exists 
between pairs of descriptors (Tables 3).

3.2. Free-Wilson analysis 
 The simple Free-Wilson analysis (FWA) 
(35) was selected in this article to show which 
substituents on phenyl ring contribute to cytotoxic 
activity and which ones detract from activity. As it 
is shown in Table 1, the selected compounds have 
a phenyl ring with different substituents on differ-
ent position of the ring. The important substituents 
such as OMe, F, Br, Cl, NO2, CH3, CN, Cl, CF3, 
OCF3,SCF3, SO2CF3 and some other substituents 
were used in this calculation. Therefore, the de-
scriptors data matrix built for the FWA has 31 rows 
(i.e., number of molecules) and 29 columns. The 
elements of the descriptor data matrix are 1 or 0, 
which indicate the presence or absence of a given 
substituent on a specified position in a molecule, 

Table 3. Correlation coefficient (R2) matrix for descriptors represented in multiple linear regression 
Equation 1.

IC2 MATS5p nCaR DipX ATS7e ASP
IC2 1 -0.243 0.094 -0.127 0.148 -0.313

MATS5p 1 -0.463 -0.043 0.149 0.318
nCaR 1 0.156 -0.059 -0.094
DipX 1 -0.460 -0.440

ATS7e 1 -0.076
ASP 1
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respectively. The following multi-linear equation 
was found between the activity data (y) and the 
Free-Wilson type descriptors data matrix:
pIC50=-0.925I2-NO2 (±0.422)+0.467I3-Cl (±0.223)+4.
630(±0.081)                                                  ( Eq. 5)
N=31, R2=0.832, SE=0.414, F=19.605
 These equations indicate that cytotoxic ac-
tivity of studied compounds are directly affected 
by the presence of nitro on position 2 and chloro on  
position 3 of phenyl ring. While 3-chloro substitu-

tion showed positive effects on the activity of the 
molecules, 2-nitro substitution represented nega-
tive effects on the cytotoxic activity. This should 
be explained that substitution of the 3rd position of 
the phenyl ring results in higher activity and vice 
versa. 

3.3. FA-MLR and PCRA
 It was discovered that seven factors could 
explain the data matrix to the extent of 95.4%, 

Table 4. Factor loadings of some significant descriptors after VARIMAX rotation.
Descriptor factor1 factor2 factor3 factor9 factor11 factor13 factor14 Communalities PIC50

pIC50 0.21 0.365 0.58 -0.225 0.298 -0.189 -0.06 0.927
v1 0.93 0.2 0.1 -0.08 0.146 0.041 0.064 0.989 0.48
HE -0.5 -0.2 0.28 -0.16 -0.097 -0.05 0.023 0.934 0.15
logp 0.07 0.4 0.46 -0.16 0.097 -0.08 -0.001 0.980 0.71
mass 0.8 0.4 0.46 0 -0.063 0.048 -0.001 0.998 0.54
MW 0.8 0.4 0.46 0 -0.063 0.048 -0.018 0.998 0.54

AMW -0.05 0.2 0.93 0.06 -0.093 0.004 0.015 0.998 0.57
Ss 0.64 0.7 -0.17 0.02 0.044 0.033 0.046 0.998 0.3

nAB 0.73 -0.1 0.03 -0.06 0.042 -0.24 -0.011 0.967 0.36
nN 0.45 -0.1 -0.18 0.04 0.012 0.33 -0.026 0.963 -0.3

X1A -0.5 -0.8 -0.08 0.18 0.03 0.073 -0.153 0.992 -0.5
X4Av 0.23 0.1 0.73 -0.09 -0.075 -0.19 -0.008 0.974 0.63
IC2 0.18 0.4 -0.05 -0.14 0.708 -0.07 -0.444 0.91 0.47

ATS7v 0.01 -0.1 0.78 -0.18 0.149 0.025 0.127 0.953 0.66
ATS6e -0.18 0.9 0.07 0.12 -0.104 -0.02 -0.189 0.955 0.18
ATS7e -0.15 0.8 0.08 -0.13 0.051 0.04 -0.173 0.915 0.37

MATS7v -0.01 0.3 0.16 0.02 0.597 0.193 -0.659 0.740 0.54
MATS4e -0.1 -0.1 0.09 -0.28 0.166 0.19 0.052 0.867 0.27
MATS3p -0.04 0.2 0.3 0.81 -0.039 -0.03 0.311 0.933 0.08
MATS5p -0.23 -0.1 -0.75 0.08 -0.222 0.023 -0.335 0.933 -0.7
MATS7p 0.13 0.3 0.23 -0.25 0.524 0.067 -0.21 0.912 0.64
GATS3v -0.04 0 0.16 -0.88 0.068 -0.11 -0.463 0.957 0.34
GATS5v 0.12 0 0.48 -0.01 0.254 -0.01 0.509 0.904 0.55
GATS4e 0.08 0.2 -0.01 0.24 -0.156 -0.33 -0.103 0.892 -0.1
GATS8e -0.33 -0.2 -0.01 -0.21 0.015 -0.1 -0.022 0.645 -0.1
GATS2p 0.1 0.4 -0.67 0.17 -0.015 0.024 0.556 0.970 -0.3
GATS4p -0.1 -0 0.5 0.23 0.15 -0.05 0.051 0.932 0.28
HOMT 0.73 -0.1 0.05 -0.08 0.069 -0.25 -0.014 0.970 0.37

J3D -0.02 0.4 -0.47 -0.01 -0.104 0.629 0.016 0.948 -0.3
MAXDN 0.34 0.9 -0.15 -0.06 0.102 -0.05 -0.043 0.985 0.39

v27 0.69 -0.2 -0.05 0.14 0.127 0.425 0.024 0.834 -0.2
v33 -0.15 -0 -0.23 0.35 -0.19 -0.47 0.177 0.627 -0.3

DipX -0.02 -0.6 0.01 0.02 -0.065 0.148 -0.06 0.916 -0.5
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from the factor analysis on the data matrix consist-
ing of the pIC50 and calculated molecular descrip-
tors. Table 4 shows that the biological activity is 
highly loaded with factors 2 and especially 3. The 
highest loading values for factor 2 are associated 
with ATS6e, ATS7e, MAXDN, X1A, Ss and DipX 
descriptors whereas AMW, X4Av, MATS5p, and 
GATS2p are the highly loaded descriptors of factor 
3. Table 4 revealed that, factors 2 and 3 are moder-
ately loaded with cytotoxic activity. Interestingly, 
the former possessed the highest loadings from to-

pological (X1A), geometrical (MAXDN), consti-
tutional (Ss), 2D autocorrelations (ATS6e, ATS7e) 
and quantum (DipX) descriptors, whereas the lat-
ter is containing the information from topological 
(X4Av), constitutional (AMW) and 2D autocorre-
lation (MATS5p, GATS2p) descriptors. As it was 
shown in Equation 3, the highly loaded descriptors 
of factors 1, 2, 3, 9, 11, 13 and 14 (instead of ap-
plying the pool of all calculated descriptors), can 
be considered as the source of molecular descrip-
tors for QSAR model building. So, the probability 

Table 5. Definitions of molecular descriptors present in the models.
Descriptor Type Descriptors Brief description

2D autocorrelations ATS7v Broto-Moreau autocorrelation of a topological structure-lag7/
weighted by atomic van der Waals volumes

MATS7v Moran autocorrelation - lag7/weighted by atomic van der Waals 
volumes

ATS2e Broto-Moreau autocorrelation of a topological structure-lag2/weighted 
by atomic Sanderson electronegativities

ATS7e Broto-Moreau autocorrelation of a topological structure-lag7/weighted 
by atomic Sanderson electronegativities

MATS3p Moran autocorrelation-lag3/weighted by atomic polarizabilities
MATS5p Moran autocorrelation-lag5/weighted by atomic polarizabilities
MATS7p Moran autocorrelation-lag7/weighted by atomic polarizabilities
GATS3v Geary autocorrelation-lag3/weighted by atomic van der Waals 

volumes
GATS6v Geary autocorrelation-lag6/weighted by atomic van der Waals 

volumes
GATS2p Geary autocorrelation-lag2/weighted by atomic polarizabilities
GATS4p Geary autocorrelation-lag4/weighted by atomic polarizabilities

Chemical descriptors logP the logarithm of its partition coefficient between n-octanol and 
water

HE Hydration Energy
Connectivity indices X1A average connectivity index chi-1

X4Av average valence connectivity index chi-4
Functional group

nCaR number of substituted aromatic C(sp2)
Geometrical descriptors J3D 3D-Balaban index

ASP asphericity
Topological descriptors T(N..F) sum of topological distances between N..F

IC2 information content index (neighborhood symmetry of 2-order)
Atom-centred fragments F-084 F attached to C1(sp2)

C-040 R-C(=X)-X/R-C#X/X-=C=X
Quantum (DipX Molecular dipole moment at X-direction
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Table 6. Structural modification of N-phenyl dichloroacetamide derivatives and their predicted activities.
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Cl

Cl
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R Cl
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O
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3t-u

Cl
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O

Cl
R

3v-w

Name R pIC50 pred leverage Binding Energy (kcal/mol)
1a I 5.32163 0.14206 -6.07
1b 4.83645 0.03573 -5.75
1c CF3 4.51794 0.00431 -5.62
1d OCF3 4.49525 0.01466 -5.59
1e SCF3 4.73234 0.06899 -5.61
1f SO2CF3 5.12789 0.13082 -5.87
1g SO2CF3 5.15017 0.15233 -5.54
1h I 4.93311 0.04201 -5.78
1i 4Cl 5.19182 0.09354 -5.89
1j 5Cl 5.33568 0.15471 -6.12
2n 3-pyridine 4.42361 0.01447 -5.41
2o 4-pyridine 4.08172 0.18136 -5.21
2p 4-imidazole 3.11165 0.35164 -5.66
2q 2-thiazole 3.50977 0.20467 -4.89
2r 2-benzothiazole 4.92476 0.10824 -5.82
2s 2-oxazole 3.36374 0.31652 -4.93
2t 2-benzoxazole 5.02848 0.06733 -5.97
2u 2-benzoimidazole 4.83826 0.12422 -5.85
2v 4-(t-butyl)-2-imidazole 4.65586 0.07917 -5.63
2w 3-methyl,3-pyridine 4.63209 0.0005 -5.59
3n I 5.24612 0.1607 -6.07
3o 4.96457 0.19515 -5.89
3p CF3 4.38738 0.03099 -5.49
3q OCF3 4.66007 0.23308 -5.57
3r SCF3 5.07760 0.29115 -5.87
3s SO2CF3 5.09804 0.22186 -5.92
3t SO2CF3 4.53719 0.10288 -5.48
3u I 4.88779 0.04451 -5.76
3v 4Cl 5.06404 0.10435 -5.92
3w 5Cl 5.35769 0.15984 -6.15

of obtaining chance models is decreased (36).
 The subsequent MLR equation using highly 
loaded descriptors is shown in Equation 2, Table 2.
3.4. PCRA

C CH≡

C CH≡

 When factor scores were used as the pre-
dictor parameters in a multiple regression equation 
(instead of their highly loaded descriptors), a pre-
dictive QSAR model with factor scores of 1, 2, 3, 
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9, 11, 13 and 14 as input variables, was obtained 
(Equation 3). This equation shows statistical quan-
tities similar to those obtained by the FA-MLR 
method (Table 2). However, it shows slightly high-
er calibration and lower cross-validation statistics 
with respect to Equation 2. This shows a sign of 
overfitting since the factors considered in Equation 
3 have information from irrelevant descriptors too. 
Considering this information in modeling, it may 
apparently increase the model variances (i.e., R2) 
but they are not useful for prediction. On the other 
hand, the advantage of the QSAR model obtained 
by PCRA is that the factors that appear in the MLR 
Equation 6 are orthogonal. The regression coeffi-
cients calculated for such variables are more stable 
and thus are closer to the real values. In addition, 
from the factor scores used, significance of the 
original variables for modeling the activity, can be 
obtained. Factor score 1 indicates the importance 
of constitutional (MW, Ss, nAB), aromaticity indi-
ces (HOMT) and atom-centered fragment (C-040) 
descriptors. The factor score 2 indicates the impor-
tance of (X1A), geometrical (MAXDN), constitu-
tional (Ss), 2D autocorrelations (ATS6e, ATS7e) 
and quantum (DipX) descriptors, and factor score 
3 signifies the importance of topological (X4Av), 
constitutional (AMW) and 2D autocorrelation 
(MATS5p, GATS2p) descriptors. The factor score 
9 reveals the importance of the 2D autocorrelation 
parameters (MATS3p, GATS3v). The factor score 
11 signifies the importance of topological (IC2), 
and 2D autocorrelation (MATS7v, MATS7p) de-
scriptors. The factor score 13 indicates the impor-
tance of only geometrical (J3D) descriptors and 
finally, the factor score 14 shows the importance 
of 2D autocorrelation (MATS7v) descriptors.

3.5. GA-PLS
 In PLS analysis, having decomposed the 
descriptors data matrix to orthogonal matrices,  
the scores are constrained to have inner relation-
ship with the dependent variables. Hence; simi-
lar to PCRA, the multicollinearity problem in the 
descriptors is omitted by PLS analysis. Genetic 
algorithm was applied to find the more useful set 
of descriptors in PLS modeling. So, many differ-
ent GA-PLS runs were done using different initial 
set of populations. As it is shown in Table 2, in 

Equation 4 (the best equation in GA-PLS model 
because of its greatest statistical parameters) a 
combination of quantum (DipX), 2D autocorrela-
tions (MATS7v, ATS2e, ATS7v), atom- centered 
fragments (C-040) and chemical (HE) descriptors 
have been selected by GA-PLS to account for the 
cytotoxic activity of N-phenyl dichloroacetamide 
derivatives. The resulted GA-PLS model pos-
sessed very high statistical quality parameters (i.e., 
R2=0.98 and Q2=0.94). The predictive ability of 
the model was measured by application to 10 ex-
ternal test set molecules. The squared correlation 
coefficient for prediction was 0.91, and standard 
error of prediction was 0.202.
 The brief description of the descriptors 
used by QSAR models are summarized in Table 5.

3.6. GA-PLS
 In silico research in medicine is thought to 
have the potential to speed the rate of discovery, 
predicting and identifying new biologically active 
compounds while reducing the need for expensive 
lab work and clinical trials. One way to attain this 
is by generating and screening drug candidates 
more effectively. On the other hand, the in silico 
procedure, minimizes the time and cost associated 
with identifying new leads (37, 38). 
 A virtual screening was applied by dele-
tion, insertion and substitution of different substi-
tutes on the parent molecules and the effects of the 
structural modifications on the biological activity 
were investigated. Then, the domain application of 
QSAR model was determined to apply the model 
for screening new compounds. The applicability 
domain (AD) of QSAR model was used to verify 
the prediction reliability, to identify the trouble-
some compounds and to predict the compounds 
with acceptable activity that falls within this do-
main.
 The important descriptors selected by 
GA-PLS model (chosen as the best model because 
of its greatest statistical parameters compared to 
the others) could be used for designing new ac-
tive compounds. Analyzing the model applicabil-
ity domain (AD) in the Williams plot (Figure 1) of 
the GA-PLS model based on the whole data set, 
showed that none of the compounds were identi-
fied as an obvious outlier for the cytotoxic activ-
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ity, if the limit of normal values for the Y outli-
ers (response outliers) was set as 2.5 times of the 
standard deviation units. As it is understood, none 
of the compounds have leverage (h) values greater 
than the threshold leverages (h*). The warning 
leverage (h*), was found to be 0.87 for the de-
veloped QSAR model. The compounds that had 
a standardized residual more than three times of 
the standard deviation units, were considered to be 
outliers. For both the training set and prediction 
set, the presented model matches the high quality 
parameters with good fitting power and the capa-
bility of assessing external data. Moreover, almost 
all of the compounds were within the applicability 
domain of the proposed model and were evaluated 
accurately while chemicals with a leverage value 
higher than h* were considered to be influential or 
high leverage chemicals (17, 25).
 Next, the in silico screening was used to 
design new compounds with potential cytotoxic 
activity according to the developed QSAR model 
and was validated by the developed GA-PLS mod-
el. So, the compounds in Table 1 with IC50<12.5 
μm were selected as template due to their good 
cytotoxic activity. Then, the in silico screening 
was applied by substituting different bioisosteric 
groups in the NH and the phenyl ring; the results 
of this investigation are summarized in Table 6. 
 The model tolerated various heterocyclic 
ring substituents in replacement of phenyl ring and 
bioisosteric changes of NH groups by CH2 and 
oxygen groups, considering the fact that all of the 

studied derivatives were within the applicability 
domain. Among different designated molecules, 
the compound 1a, 1g, 1i, 1j, 3n, 3w showed the best 
activity (pIC50>5.15). Thus, in order to clarify the 
relation between the activities of the compounds 
with different functional groups, this compound 
was chosen for more structural modifications. As it 
was shown in Table 6, esteric derivatives of DCA 
have good potential for becoming an anticancer 
agent. Finally, this result confirms the reliability 
of the models and shows that with the aim of the 
QSAR model and use of in silico screening, it is 
possible to identify new synthetic compounds for 
drug discovery.
 The proposed QSAR models have all 
conditions to be considered as predictive models. 
Firstly, all have correlation coefficient of cross-val-
idation (Q2) larger than 0.5 and of prediction (r2) 
higher than 0.6. Thus, according to great statistics, 
GA-PLS can be considered as the most predictive 
model. According to the cross-validation results, 
all models have Q2>0.7 and can be considered as 
predictive models. To have a consideration on the 
cross-validated prediction results, the predicted ac-
tivity data are plotted against the experimental ac-
tivities in Figure 2. It should be mentioned that the 
least scattering of data was obtained from GA-PLS. 
 Table 2 shows that none of the proposed 
QSAR models were obtained by chance and the 
GA-PLS model, because of its greatest statistical 
parameters, is the best predictive model.
3.7. Docking Studies

 

Figure 1. Williams plot for the training set and external prediction set for cytotoxic activity of N-arylphe-
nyl-2,2-dichloroacetamide analogues.
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 Docking is frequently used to predict the 
binding orientation of small molecule drug candi-
dates to their protein targets in order to in turn pre-
dict the affinity and activity of the small molecule. 
Hence docking plays a great role in the rational 
design of drugs. DCA stimulates the activity of 
the enzyme PDH through inhibition of the enzyme 
PDKs. The crystal structure of PDK2 in complex 
with DCA has been acquired, and it shows that 
DCA indwells the pyruvate binding site in the N-
terminal regulatory (R) domain (2). 
 Here, docking studies were carried out on 
our compounds to find their binding site, binding 
modes and the best direction on the base of their 
binding energy. The docking simulations were 
carried out by means of an in house batch script 
(DOCKFACE) for automatic running of AutoDock 
4.2 in a parallel mode, using all system resources. 
Having completed the docking process, the pro-
tein–ligand complex was analyzed to investigate 
the type of interactions. Top ranked binding ener-
gies (kcal/mol) in AutoDock dlg output file, were 
considered as response in each run. Docking re-
sults were supported almost by high cluster popu-
lations. The conformation with the lowest binding 
energy was considered as the best docking result in 
each case.
 As it was shown in Figure 3, there is a 
good correlation between experimental pIC50 
and docking binding energy. Hence, our docking 
protocol can discriminate between the ligand (ac-
tive) and decoys (non-active). The validated dock-
ing protocol was also applied to our designated 

ligands. Compounds 1a, 1j, 3n and 3w based on 
their highest docking binding energy can be a good 
candidate for synthesis. It should be emphasized 
that there is a good correlation between the QSAR 
and docking results.
 On the other hand, promising results 
such as the ligand-receptor binding site and bind-
ing modes were obtained from docking analyses. 
The results for each ligand were compared to its 
corresponding co-crystal ligand. Hydrogen bind-
ings between docked potent agents such as 3g and 
the PDK receptor (2BU8) were analyzed using 
Autodock tools program (ADT, Version 1.5.6), 
ligplotv.4.5.3 (39) and LigandScout 3.12 (40). As 
it is shown in Figure 4, a hydrogen bond accep-
tor interaction exists between oxygens of carboxyl 
group of co-crystal ligand (DCA) and Arg154, 
Tyr80 in the receptor (Figure 3A). Meanwhile, a 
hydrogen bond acceptor interaction exists between 
oxygen of nitro group of 2d and Arg158, Arg 154, 
Arg 112 in the receptor, there  also exists an arene-
arene interaction between phenyl group of com-
pound 2d with the imidazole ring of His115 in the 
receptor (Figure 3B).
 It is clear that score analysis of the dock-
ing process is not capable of detecting all active 
compounds due to a bad evaluation of the ligand 
binding energies and protein ligand interaction fin-
gerprint (PLIF) studies could be used as a more re-
liable analysis technique (30). This method makes 
it possible to study the effect of different starting 
states of the structures on generated poses as well 
as their corresponding vectors of contacts towards 

 

Figure 2. Plots of cross-validated predicted values of activity by GA-PLS against the experimental values.
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receptors during docking procedure. For this pur-
pose, the docking of all 31 compounds of the 
QSAR study as well as our designated compounds 
(Table 1, 6) were carried out, then all generated 
poses of the ligands were subjected to AuposSOM 
2.1 to calculate their contact vectors within the 
receptor binding cavity and appraisal of docking 
results based on the clustering of ligands by the 
resemblance of their contacts with target. In this 
procedure, the contacts between the structures and 
the protein, comprise of hydrophobic, hydrogen 
bonding and coulombic interactions. The resulted 
vectors of contacts are then analyzed using self-
organizing map as implemented in AuposSOM 
software. The output of self-organizing map is a 
classification pattern for ligands. For visualiza-
tion of the results, the output files were subjected 
to Dendroscope 3.2.10. To the best of our knowl-
edge, ligands in the same subgroup show a similar 
behavior. Having chosen the compound 5b as the 
best compound due to its greatest experimental cy-
totoxic activity, the PLIF results of our designated 
compounds were compared to this structure. As 
it was shown in Figure 5, the designated ligands 
such as 1j, 1i, 1f, 2t, 2v, 3p, 3q and 3s are clustered 
in the 5b subgroup. Therefore these compounds 
can be good candidates for synthesis. 

4. Conclusion
 In this study, four different QSAR model-
ing methods, MLR, FA-MLR, PCR and GA-PLS 
as well as FWA were used in the construction of 

a QSAR model for cytotoxic activity of N-phenyl 
dichloroacetamide derivatives and the resulting 
models were compared. As it was shown in the ar-
ticle, having performed GA before the calibration, 
a regression model with enhanced predictive pow-
er would be obtained. The reliability, accuracy and 
predictability of the proposed models were evalu-
ated by various criteria, including cross-validation, 
the root mean square error of prediction (RMSEP), 
root mean square error of cross-validation (RM-
SECV), validation through and Y-randomization. 
It was also shown that the proposed model is a use-
ful aid for reduction of the time and cost of synthe-
sis and biological evaluation of DCA analogues. 
Moreover, the results confirm that among the ap-
plied models, the GA-PLS is superior for the pre-
diction of the pIC50 of DCA analogues. The statis-
tical parameters of the four different chemometric 
methods used in this study are represented in Table 
2. All models represent high goodness of fit (mea-
sured by R2), whereas that obtained from GA-PLS 
is significantly better than that of the other models. 
To our knowledge, GA-PLS is the best choice for 
the prediction purpose of QSAR study, and for de-
scriptive purpose it should be better to use the MLR 
method. The cross-validation statistics reported in 
Table 2 suggest the higher prediction ability of the 
GA-PLS model. This can be ascribed to the ex-
ploit of a large number of descriptors by GA-PLS 
compared to the MLR. The study suggests the im-
portance of dipole moment in x-direction (DMX), 
2D autocorrelations and hydration energy (HE) of 

 

Figure 3. Plots of experimental pIC50 values versus docking binding energy.
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molecules for DCA derivatives’ cytotoxic activ-
ity. It is clearly understood that 2D autocorrelation 
descriptors such as MATS7v, ATS7v, ATS2e and 
quantum chemical parameter (DMX) are impor-
tant structural parameters that significantly influ-
ence the cytotoxic activity. The 2D autocorrelation 
descriptors depict the topological structure of the 
compounds, but are more complicated in nature 

with respect to the classical topological descrip-
tors. The calculation of these descriptors includes 
the summations of different autocorrelation func-
tions, corresponding to different structural lags 
and leads to different autocorrelation vectors, 
corresponding to the lengths of the substructural 
fragments. As a result, these descriptors address 
the topology of the structure or parts thereof in 

 

Figure 4. Interactions of A) DCA and B) compound 2d with the residues in the binding site of PDK (2BU8) 
receptor.

 

Figure 5. AuposSOM results for poses of docking.
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association with a specific physicochemical prop-
erty. According to the developed QSAR model, in 
silico screening was applied and new compounds 
such as 1a, 1g, 1i, 1j, 3n, 3w with potential cy-
totoxic activity were suggested for synthesis.
 The docking study revealed that, there 
exists an arene-arene interaction between phenyl 
group of our ligands with imidazole ring of His115 
in the receptor and based on the substituents on the 
phenyl group there might exist a hydrogen bond 
interaction with Arg158, Arg 154, Arg 112 in the 
receptor. However, because our biological data is 
merely cytotoxicity data, not enzyme (PDK) in-
hibitory data, and the docking estimation of the li-
gand binding energies is not good enough, no good 
relation between pIC50 and docking energy ex-
ists. Therefore the docking results were subjected 

to PLIF studies to distinguish active compounds 
from inactive ones with particular analysis of in-
teratomic contacts between the ligand- receptor 
complexes. As a result, compounds 1j, 1i, 1f, 2t, 
2v, 3p, 3q and 3s are introduced as  good candi-
dates for synthesis. 
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