In vitro evaluation of erythromycin incorporated with β-cyclodextrin and povidone polymers for capsule drug delivery

Document Type : Original Article

Authors

1 Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Igbinedion University, Okada, Edo State, Nigeria.

2 Department of Pharmaceutical Microbiology, College of Pharmacy, Igbinedion University, Okada, Edo State, Nigeria.

10.30476/tips.2024.102783.1241

Abstract

Entrapment of drugs within polymers have been used to modify dosage drug release. The aim of this work is to compare the entrapment potentials of water soluble povidone and or β-cyclodextrin polymers in encapsulated erythromycin. Drug-polymer interaction was determined using FTIR, SEM and DSC. Using 23 factorial design, 8 variant polymer combinations were devised. Wetted erythromycin and polymer mix was kneaded and granulated. The granules were dried and analysed for drug-loading and micromeritic properties before being filled into a hard gelatin capsule. The capsules were analysed for physicochemical and antimicrobial properties. The FTIR spectrum of the drug-polymer depicts the leading peaks of erythromycin. SEM images and DSC thermogram of the drug-polymers showed irregular fluffy and porous structures, and reduction in endothermic temperatures respectively. The granules showed Carr’s index, Hausner ratios and angle of repose < 24.07, 1.31 and 30.51° respectively, and over 97.81 % drug entrapment. All capsules met USP specification for weight uniformity. Erythromycin-povidone capsules disintegrated within 15 min, had 53 % dissolution in 15 min, and 53 – 100 % dissolution within 180 min. At 25 mg/ ml, erythromycin-povidone capsule gave zones of inhibition of 37.67 – 39.83 mm. FTIR analysis of the erythromycin-polymer mix indicated compatibility of erythromycin with the polymers, the SEM indicated formation of amorphous complex, while the DSC inferred non-complex interaction and improvement in solubility. In comparison with formulations with erythromycin-β cyclodextrin complex, erythromycin-povidone complex showed better promise in enhancing erythromycin capsule formulation and antimicrobial properties.

Keywords


1.    Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L. Nanoparticle-Based Delivery Systems for Vaccines. Vaccines (Basel). 2022 Nov 17;10(11):1946. doi: 10.3390/vaccines10111946. PMID: 36423041; PMCID: PMC9694785.
2    Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev. 2022 Jul;42(4):1704-1734. doi: 10.1002/med.21889. Epub 2022 May 31. PMID: 35638460.
3    Sagita E, Syahdi RR, Arrahman A. Synthesis of polymer-drug conjugates using natural polymer: what, why and how? Pharm Sci Res(PSR) 2018; 5(3): 97-115.
4    Singh J, Walia M, Harikumar S. Formulation and evaluation of fast dissolving tablets of rosuvastatin. J Drug Del Ther. 2014:4(5);173-181. 
5    Grant JJ, Pillai SC, Perova TS, Hehir S, Hinder SJ, McAfee M, Breen A. Electrospun fibres of chitosan / PVP for the effective chemotherapeutic drug delivery of 5 –fluorourracil. Chemosensors. 2021;9(4):70.
6    Hiremath P, Nuguru K, Agrahari V. Material attributes and their impact on wet granulation process performance In Narang, A.S., Badaway, A.I.F. (Eds.) Handbook of Pharmaceutical Wet Granulation: Theory and Practice in Quality by Design Paradigm. Cambridge. 2019:263-315. 
7    Tiwari G, Tiwari R, Rai AK. Cyclodextrins in delivery systems: Applications. J Pharm Bioallied Sci. 2010 Apr;2(2):72-9. doi: 10.4103/0975-7406.67003. PMID: 21814436; PMCID: PMC3147107.
8    Ramos-Martínez B, Dávila-Pousa C, Merino-Bohórquez V, García-Palomo M, Flox-Benítez MªP. Use of cyclodextrins as excipients in pharmaceutical products: why not in extemporaneous preparations? Farm Hosp. 2021 Nov 13;46(1):31-39. English. PMID: 35379090.
9    Franco P, De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel). 2020 May 13;12(5):1114. doi: 10.3390/polym12051114. PMID: 32414187; PMCID: PMC7285361.
10    Buhler V. Polivinylpyrrolidone Excipient for Pharmaceuticals: Povidone, Crospovidone and Copovidone. Berlin, Heidelberg, New York: Springer, 2005; p. 66-124. doi:10.1007/b138598
11    Awasthi R,Manchanda S, Das P,  Velu V, Malipeddi H, et al. 9 - Poly(vinylpyrrolidone). Engineering of Biomaterials for Drug Delivery Systems. Beyond Polyethylene Glycol. Woodhead Publishing Series. 2018:255-272. 
12    Platon VM, Dragoi B, Marin L. Erythromycin Formulations-A Journey to Advanced Drug Delivery. Pharmaceutics. 2022 Oct 13;14(10):2180. doi: 10.3390/pharmaceutics14102180. PMID: 36297615; PMCID: PMC9608461.
13    Kempe H, Parareda Pujolràs A, Kempe M. Molecularly imprinted polymer nanocarriers for sustained release of erythromycin. Pharm Res. 2015 Feb;32(2):375-88. doi: 10.1007/s11095-014-1468-2. Epub 2014 Aug 8. PMID: 25103333.
14    Cyphert EL, Wallat JD, Pokorski JK, von Recum HA. Erythromycin Modification That Improves Its Acidic Stability while Optimizing It for Local Drug Delivery. Antibiotics (Basel). 2017 Apr 25;6(2):11. doi: 10.3390/antibiotics6020011. PMID: 28441360; PMCID: PMC5485444.
15    Yu J, Cen D, Chen Y, Zhao H, Xu M, Wu S, et al. Epsilon-poly-l-lysine conjugated erythromycin for enhanced antibiotic therapy. RSC Adv. 2023 Jun 20;13(27):18651-18657. doi: 10.1039/d3ra03168c. PMID: 37346938; PMCID: PMC10280332.
16    Gauri HS. Recent development of novel drug delivery of herbal drugs. RPS Pharmacy and Pharmacology Reports, 2023; 2(4), rqad028. 
17    Nwankwo EO, Nasiru MS. Antibiotic sensitivity pattern of Staphylococcus aureus from clinical isolates in a tertiary health institution in Kano, Northwestern Nigeria. Pan Afr Med J. 2011;8:4. doi: 10.4314/pamj.v8i1.71050. Epub 2011 Jan 26. PMID: 22121413; PMCID: PMC3201603.
18    Brisaert M, Heylen M, Plaizier-Vercammen J. Investigation on the chemical stability of erythromycin in solutions using an optimization system. Pharm World Sci. 1996 Oct;18(5):182-6. doi: 10.1007/BF00820730. PMID: 8933579.
19    Shafia S, Chandluri P, Ganpisetti R, Lakshmi BVS, Swami PA. Erythromycin as broad spectrum antibiotics. World J Pharm Med Res. 2016:2(6): 23-26
20    Talik PAW, Øuromska-witek B, Hubicka U, Krzek JAN. The use of the dsc method in quantification of active pharmaceutical. ACTA Pol Pharm Drug Res. 2017; 74(4), 1049–1055.
21    Brtel KD, Zoglio MA, Ritschel WA, Carstensen JT. Physical aspects of wet granulation IV –effect of kneading time on dissolution rates and tablet properties. Drug Dev Ind Pharm.  2008; 16(6): 963-981. 
22    Morello JA, Mizer HE, Granato PA. Disinfectant: chemical antimicrobial gent. In Laboratory Manual and Workbook in Microbiology, Applications to Patient Care. The McGraw-Hill Companies. Section VI, 2002; exercise 14, p. 90 - 94
23    Barnes V L, Heithoff DM, Mahan SP, House JK, Mahan MJ. Antimicrobial susceptibility testing to evaluate minimum inhibitory concentration values of clinically relevant antibiotics. STAR Protoc. 2023 Sep 15;4(3):102512. doi: 10.1016/j.xpro.2023.102512. Epub 2023 Aug 10. PMID: 37566547; PMCID: PMC10448204.
24    Saxena P, Shukla P, Gaur M. Thermal analysis of polymer blends and double layer by DSC. Polym Compos. 2021;29(9_suppl):S11-S18. doi:10.1177/0967391120984606
25    Qosim N, Majd H, Huo S, Edirisinghe M, Williams GR. Hydrophilic and hydrophobic drug release from core (polyvinylpyrrolidone)-sheath (ethyl cellulose) pressure-spun fibers. Int J Pharm. 2024 Apr 10;654:123972. doi: 10.1016/j.ijpharm.2024.123972. Epub 2024 Mar 7. PMID: 38458404.
26    Fathy M, Hassan MA, Mohamed FA. Differential scanning calorimetry to investigate the compatibility of ciprofloxacin hydrochloride with excipients. Pharmazie. 2002 Dec;57(12):825-8. PMID: 12561245.
27    Ali M, Sherazi STH, Mahesar SA. Quantification of erythromycin in pharmaceutical formulation by transmission Fourier transform infrared spectroscopy. Arab J Chem. 2012; 7:1104-1109. 
28    Ali A, Zhang N, Sabtos RM. Mineral characterization using scanning electron microscopy (SEM): a review of the fundamentals, advancements, and research directions. Appl Sci. 2023;13(23),12600. 
29    Wang S, Ren F. Rheological, pasting, and textural properties of starch In Starch Structure, Functionality and Application in Foods. Springer, Singapore, 2020. p. 121-129. https://doi.org/10.1007/978-981-15-0622-2_2
30    Shoukat H, Pervaiz F, Khan M, Rehman S, Akram F, Abid U, et al. Development of β-cyclodextrin/polyvinypyrrolidone-co-poly (2-acrylamide-2-methylpropane sulphonic acid) hybrid nanogels as nano-drug delivery carriers to enhance the solubility of Rosuvastatin: An in vitro and in vivo evaluation. PLoS One. 2022 Jan 21;17(1):e0263026. doi: 10.1371/journal.pone.0263026. PMID: 35061861; PMCID: PMC8782392.
31    Giuliano C, Patel CR, Kale-Pradhan PB. A Guide to Bacterial Culture Identification And Results Interpretation. P T. 2019 Apr;44(4):192-200. PMID: 30930604; PMCID: PMC6428495.
32    Mutahhar A, Puspitasari D. Sensitivity of erythromycin against corynebacterium diphtheria. Indonesian J Tropical Infectious Disease. 2020; 8(1): 24-29.