Evaluation of the inhibitory activities of thyme compounds against coronavirus disease-19 (COVID-19) by molecular docking and molecular dynamic simulation

Document Type : Original Article

Author

Inorganic Chemistry Department, Faculty of Chemistry, Razi University, Kermanshah, Iran

Abstract

We have explored the inhibitory capability of Thymus vulgaris compounds against ACE2 protein -the host receptor for SARS-CoV-2, papain-like and main protease of the SARS-CoV-2 through molecular simulations. The docking results showed that the compounds had a greater capability to inhibit ACE2 and papain-like protease in comparison to the main protease. The majority of compounds (61.7%) bind to the S2 active pocket of ACE2. The most powerful anticoronavirus activity is expressed in the order: Terpinolene > Thymol > Bicyclogermacrene. Pi interactions play key roles in the binding of three compounds to the active sites of ACE2 enzyme. 34 out of these 60 compounds were fitted in the PLpro active site. α-humulene followed by (+)-Spathulenol, and (-)-β-Bourbonene showed strong capacity to inhibit PLpro binding site. Except for (+)-Spathulenol which also formed H-bond with Asp165 and Tyr274 amino acids, α-humulene and (-)-β-Bourbonene conjugate with PLpro were stabilized mainly through alkyl and pi interactions. According to the Mpro docking results, 58.3% of thyme compounds could block the active site. The binding energy order was (-)-Spathulenol at highest, then Bicyclogermacrene, (+)-δ-cadinene, (+)-Spathulenol, and Viridiflorol, followed by (-)-β-Caryophyllene oxide. Cys145, His41, Met49, and Met165 are key residues in the interaction of these ligands with the enzyme binding site. The weakest interaction with all three enzymes was observed for (R)-(-)-1-Octen-3-ol and (3S)-Oct-1-en-3-ol. Based on the molecular dynamics simulation lowest conformational change was detected for ACE2 in the present of Terpinolene. (-)-Spathulenol and α-Humulene had the least and most displacement compared to its initial positions, respectively.
Please cite this article as: Saba Hadidi. Evaluation of the inhibitory activities of thyme compounds against coronavirus disease-19 (COVID-19) by molecular docking and molecular dynamic simulation. Trends in Pharmaceutical Sciences. 2022;8(2):95-106. doi: 10.30476/TIPS.2022.94389.1137

Keywords


1.    Chen J. Pathogenicity and transmissibility of 2019-nCoV-A quick overview and comparison with other emerging viruses. Microbes Infect. 2020 Mar;22(2):69-71. doi: 10.1016/j.micinf.2020.01.004. Epub 2020 Feb 4. PMID: 32032682; PMCID: PMC7102641.
2.    Lis-Balchin M, Deans SG. Bioactivity of selected plant essential oils against Listeria monocytogenes. J Appl Microbiol. 1997 Jun;82(6):759-62. doi: 10.1046/j.1365-2672.1997.00153.x. PMID: 9202441.
3.    Janssen AM, Scheffer JJ, Baerheim Svendsen A. Antimicrobial activities of essential oils. A 1976-1986 literature review on possible applications. Pharm Weekbl Sci. 1987 Aug 21;9(4):193-7. doi: 10.1007/BF02029329. PMID: 3309882.
4.    Ocaña A, Reglero G. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages. J Obes. 2012;2012:104706. doi: 10.1155/2012/104706. Epub 2012 Apr 17. PMID: 22577523; PMCID: PMC3345235.
5.    Sáez F, Stahl-Biskup E. Essential oil polymorphism in the genus Thymus. Thyme–the genus Thymus. London: Taylor & Francis. 2002; 125-43.
6.    Cruz T, Cabo MP, Cabo MM, Jimenez J, Cabo J, Ruiz C. In vitro antibacterial effect of the essential oil of Thymus longiflorus Boiss. Microbios. 1989;60(242):59-61. PMID: 2514339.
7.    Rota C, Carramiñana JJ, Burillo J, Herrera A. In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens. J Food Prot. 2004 Jun;67(6):1252-6. doi: 10.4315/0362-028x-67.6.1252. PMID: 15222560.
8.    Mărculescu A, Vlase L, Hanganu D, Drăgulescu C, Antonie I, Neli-Kinga O. Polyphenols analyses from Thymus species. J Proc Rom Acad Series B. 2007;3:117-21.
9.    Rustaiyan A, Masoudi S, Monfared A, Kamalinejad M, Lajevardi T, Sedaghat S, Yari M. Volatile constituents of three Thymus species grown wild in Iran. Planta Med. 2000 Mar;66(2):197-8. doi: 10.1055/s-0029-1243136. PMID: 10763607.
10.    Taylor L. Plant based drugs and medicines. Raintree Nutrition Inc. 2000; 1-5.
11.    Nickavar B, Mojab F, Dolat-Abadi R. Analysis of the essential oils of two Thymus species from Iran. Food Chem. 2005;90:609-11. doi.org/10.1016/j.foodchem.2004.04.020
12.    Agnihotri S, Vaidya AD. A novel approach to study antibacterial properties of volatile components of selected Indian medicinal herbs. Indian J Exp Biol. 1996 Jul;34(7):712-5. PMID: 8979514.
13.    Juven BJ, Kanner J, Schved F, Weisslowicz H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J Appl Bacteriol. 1994 Jun;76(6):626-31. doi: 10.1111/j.1365-2672.1994.tb01661.x. PMID: 8027009.
14.    Manou I, Bouillard L, Devleeschouwer MJ, Barel AO. Evaluation of the preservative properties of Thymus vulgaris essential oil in topically applied formulations under a challenge test. J Appl Microbiol. 1998 Mar;84(3):368-76. doi: 10.1046/j.1365-2672.1998.00353.x. PMID: 9721641.
15.    Tabak M, Armon R, Potasman I, Neeman I. In vitro inhibition of Helicobacter pylori by extracts of thyme. J Appl Bacteriol. 1996 Jun;80(6):667-72. doi: 10.1111/j.1365-2672.1996.tb03272.x. PMID: 8698668.
16.    Marino M, Bersani C, Comi G. Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. J Food Prot. 1999 Sep;62(9):1017-23. doi: 10.4315/0362-028x-62.9.1017. PMID: 10492476.
17.    Amiri H. Essential oils composition and antioxidant properties of three thymus species. Evid Based Complement Alternat Med. 2012;2012:728065. doi: 10.1155/2012/728065. Epub 2011 Aug 25. PMID: 21876714; PMCID: PMC3163135.
18.    Van den Broucke CO, Lemli JA. Pharmacological and chemical investigation of thyme liquid extracts. Planta Med. 1981 Feb;41(2):129-35. doi: 10.1055/s-2007-971689. PMID: 7232550.
19.    Van Den Broucke CO, Lemli JA. Spasmolytic activity of the flavonoids from Thymus vulgaris. Pharm Weekbl Sci. 1983 Feb 25;5(1):9-14. doi: 10.1007/BF01959645. PMID: 6844124.
20.    Meister A, Bernhardt G, Christoffel V, Buschauer A. Antispasmodic activity of Thymus vulgaris extract on the isolated guinea-pig trachea: discrimination between drug and ethanol effects. Planta Med. 1999 Aug;65(6):512-6. doi: 10.1055/s-1999-14006. PMID: 10483369.
21.    Reiter M, Brandt W. Relaxant effects on tracheal and ileal smooth muscles of the guinea pig. Arzneimittelforschung. 1985;35(1A):408-14. PMID: 4039178.
22.    Oliveira JR, de Jesus Viegas D, Martins APR, Carvalho CAT, Soares CP, Camargo SEA, Jorge AOC, de Oliveira LD. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch Oral Biol. 2017 Oct;82:271-279. doi: 10.1016/j.archoralbio.2017.06.031. Epub 2017 Jun 27. PMID: 28683409.
23.    Youdim KA, Deans SG. Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. Br J Nutr. 2000 Jan;83(1):87-93. PMID: 10703468.
24.    Aeschbach R, Löliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol. 1994 Jan;32(1):31-6. doi: 10.1016/0278-6915(84)90033-4. PMID: 7510659.
25.    Haraguchi H, Saito T, Ishikawa H, Date H, Kataoka S, Tamura Y, Mizutani K. Antiperoxidative components in Thymus vulgaris. Planta Med. 1996 Jun;62(3):217-21. doi: 10.1055/s-2006-957863. PMID: 8693032.
26.    Youdim KA, Deans SG. Dietary supplementation of thyme (Thymus vulgaris L.) essential oil during the lifetime of the rat: its effects on the antioxidant status in liver, kidney and heart tissues. Mech Ageing Dev. 1999 Sep 8;109(3):163-75. doi: 10.1016/s0047-6374(99)00033-0. PMID: 10576332.
27.    Nolkemper S, Reichling J, Stintzing FC, Carle R, Schnitzler P. Antiviral effect of aqueous extracts from species of the Lamiaceae family against Herpes simplex virus type 1 and type 2 in vitro. Planta Med. 2006 Dec;72(15):1378-82. doi: 10.1055/s-2006-951719. Epub 2006 Nov 7. PMID: 17091431.
28.    Benarba B, Gouri A. An Alternative Preventive and Therapeutic Approach to 2019-nCoV Infection. Nat Prod Commun. 2020;15:1934578X20944691. doi.org/10.1177/1934578X20944691
29.    Gondim FL, Serra DS, Cavalcante FSÁ. Effects of Eucalyptol in respiratory system mechanics on acute lung injury after exposure to short-term cigarette smoke. Respir Physiol Neurobiol. 2019 Aug;266:33-38. doi: 10.1016/j.resp.2019.04.007. Epub 2019 Apr 28. PMID: 31022470.
30.    Satyal P, Murray BL, McFeeters RL, Setzer WN. Essential Oil Characterization of Thymus vulgaris from Various Geographical Locations. Foods. 2016 Oct 27;5(4):70. doi: 10.3390/foods5040070. PMID: 28231164; PMCID: PMC5302419.
31.    Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MDM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res. 2018 Sep;32(9):1688-1706. doi: 10.1002/ptr.6109. Epub 2018 May 22. PMID: 29785774.
32.    Rizk A. The phytochemistry of the flora of Qatar, Published by King Print of Richmond. University of Qatar, Doha State. 1986.
33.    Zarzuelo, A. and Crespo, E. The medicinal and non medicinal uses of thyme. In thyme. The genus Thymus. In: Stahl-Biskup, E. and Saez, F., Eds. Medicinal and Aromatic Plants Industrial Profiles, New York, Taylor and Francis. 2002; 263-292.
34.    Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020 Apr;79:104212. doi: 10.1016/j.meegid.2020.104212. Epub 2020 Jan 29. PMID: 32004758; PMCID: PMC7106301.
35.    Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020 Jan 24;12(2):135. doi: 10.3390/v12020135. PMID: 31991541; PMCID: PMC7077245.
36.    Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, Herman BD, Sheahan T, Heise M, Genrich GL, Zaki SR, Baric R, Subbarao K. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 2007 Jan;3(1):e5. doi: 10.1371/journal.ppat.0030005. PMID: 17222058; PMCID: PMC1769406.
37.    Pence HE, Williams A. ChemSpider: an online chemical information resource. ACS Publications, 2010.
38.    BIOVIA, D.S. BIOVIA Discovery Studio Visualizer, v16. 1.0. 15350. San Diego: Dassault Systèmes. 2015.
39.    Neese F, Wennmohs F. ORCA (3.0. 2)-An ab initio. DFT and semiempirical SCF-MO package,(Max-Planck-Institute for Chemical Energy Conversion Stiftstr. 34-36, 45470 Mulheim ad Ruhr, Germany). 2013.
40.    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. doi: 10.1093/nar/28.1.235. PMID: 10592235; PMCID: PMC102472.
41.    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi: 10.1002/jcc.21334. PMID: 19499576; PMCID: PMC3041641.
42.    Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011 Oct 24;51(10):2778-86. doi: 10.1021/ci200227u. Epub 2011 Oct 5. PMID: 21919503.
43.    Gurley SB, Coffman TM. Angiotensin-converting enzyme 2 gene targeting studies in mice: mixed messages. Exp Physiol. 2008 May;93(5):538-42. doi: 10.1113/expphysiol.2007.040014. Epub 2008 Mar 30. PMID: 18376006.
44.    Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020 Apr;8(4):e21. doi: 10.1016/S2213-2600(20)30116-8. Epub 2020 Mar 11. Erratum in: Lancet Respir Med. 2020 Jun;8(6):e54. PMID: 32171062; PMCID: PMC7118626.
45.    Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727-733. doi: 10.1056/NEJMoa2001017. Epub 2020 Jan 24. PMID: 31978945; PMCID: PMC7092803.
46.    Bunyavanich S, Do A, Vicencio A. Nasal Gene Expression of Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA. 2020 Jun 16;323(23):2427-2429. doi: 10.1001/jama.2020.8707. PMID: 32432657; PMCID: PMC7240631.
47.    Liu M, Wang T, Zhou Y, Zhao Y, Zhang Y, Li J. Potential Role of ACE2 in Coronavirus Disease 2019 (COVID-19) Prevention and Management. J Transl Int Med. 2020 May 9;8(1):9-19. doi: 10.2478/jtim-2020-0003. PMID: 32435607; PMCID: PMC7227161.
48.    Nejat R, Sadr AS. SARS virus papain-like protease: a mysterious weapon. Biostat. Epidemiol. 2019; 5, 288-95. doi.org/10.18502/jbe.v5i4.3873
49.    Shin D, Mukherjee R, Grewe D, Bojkova D, Baek K, Bhattacharya A, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020 Nov;587(7835):657-662. doi: 10.1038/s41586-020-2601-5. Epub 2020 Jul 29. PMID: 32726803; PMCID: PMC7116779.
50.    McClain CB, Vabret N. SARS-CoV-2: the many pros of targeting PLpro. Signal Transduct Target Ther. 2020 Oct 6;5(1):223. doi: 10.1038/s41392-020-00335-z. PMID: 33024071; PMCID: PMC7537779.
51.    Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020 Apr 24;368(6489):409-412. doi: 10.1126/science.abb3405. Epub 2020 Mar 20. PMID: 32198291; PMCID: PMC7164518.
52.    Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020 Jun;582(7811):289-293. doi: 10.1038/s41586-020-2223-y. Epub 2020 Apr 9. PMID: 32272481.
53.    Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep. 2019 Dec 11;36(12):1654-1686. doi: 10.1039/c8np00095f. PMID: 30976762.