Comparison of MMP-9 Inhibition Activities of Phenolic Acids of Sandoricum koetjape Leaves by Molecular Docking

Document Type : Original Article

Authors

1 Department of Pharmaceutical and Food Analysis, Poltekkes Kemenkes Jakarta II, Indonesia

2 Department of Biotechnology, Plant Production and Biotechnology Division, PT SMART Tbk, Indonesia.

10.30476/tips.2023.97645.1180

Abstract

Sandoricum koetjape has been used for generations in traditional Indonesian medicine. The leaves were used to treat helminthiasis, cough, stomachache, diarrhea, bloating, leucorrhoea, colic, and fever in Indonesia. Identification of phenolic acids in the Sandoricum koetjape leaves was done by ultrahigh-pressure liquid chromatography (UPLC). Gallic acid, 4-hydroxybenzoic acid, chlorogenic acid, caffeic acid, syringic acid, p-coumaric acid, and ferulic acid were identified as phenolic acids found in Sandoricum koetjape leaf extracts. Heart disease, stroke, and cancer are the three noncommunicable diseases that kill the most people in Indonesia. Coronary artery disease, cardiovascular disease, cardiomyopathy, cancer, tumor, type 2 diabetes, and cholesterol have all been linked to MMP-9. This study aimed to determine the phenolic acids contained in the leaves of Sandoricum koetjape and to determine their inhibitory activity against the matrix metalloproteinase-9 (MMP-9). Molecular docking studies were carried out by the autodock 4.2 program integrated with the pyrx v.09.8 virtual screening tool. The chlorogenic acid in Sandoricum koetjape leaf extract binds more strongly than the other phenolic acids. Interacting between chlorogenic acid with MMP-9 on amino LEU187, LEU188, ALA189, HIS405, and TYR423. AdmetSAR and Protox II databases were used for physiochemical and ADMET properties. Chlorogenic acid is expected to have high oral bioavailability in humans, good intestinal absorption, and an equivalent distribution in the intestine and blood plasma. Chlorogenic acid’s acute toxicity is also expected to be low. Chlorogenic acid is also non-toxic to the liver, immune system, mutagenic, and cytotoxic. Sandoricum koetjape phenolic acid, particularly chlorogenic acid, appeared to be an efficient MMP-9 inhibitor based on docking results.  

Highlights

Susy Saadah (Google Scholar)

Keywords


1.    Awang-Jamil Z, Aminuddin MF, Zaidi BQ, Basri AM, Ahmad N HT. Phytochemicals and antimicrobial analysis of selected medicinal plants from brunei darussalam. Biodivers J. 2021;22(2):601-6. 
2.     AstitiN PA, Ramona Y. GC-MS Analysis of Active and Applicable Compounds in Methanol Extract of Sweet Star Fruit (Averrhoa Carambola L.) Leaves. Hayati J Biosci. 2021:28(1):12, doi:10.4308/hjb.28.1.12.
3.     Blench R. A history of fruits on the Southeast Asian mainland. Occas Pap. 2008;4:115–37. 
4.     Rohman RA, Maryanto SD, Sudania WM, Utomo C, Liwang T. Nitrogen uptake efficiency induced fumarate hydratase activity in oil palm seedlings. J protein proteomics. 2022;13:117–24. 
5.     Bumi MB, Heliawaty L, Hermawati E, Syah YM. Four limonoids from the seeds extract of Sandoricum koetjape. J Nat Med. 2019 Jun;73(3):641-647. doi: 10.1007/s11418-019-01303-w. Epub 2019 Apr 10. PMID: 30972689.
6.     Saadah S, Tulandi SM. Phytochemical Screening and Total Phenolics of Stem and Leaf Extracts of Sandoricum Koetjape. J Agroindustri Halal. 2020;6(2):164-71. doi:10.30997/jah.v6i2.3156.
7.     Saadah S, Tulandi SM, Rohman RA. Phytochemical and gas chromatography-mass spectrometry profiling of two plant parts of Sandoricum koetjape. Biodivers J. 2022;23(12):6199–207. 
8.     Hamzah FN, Subandi, Sujarwo W, Septama AW, Mozef T. Antioxidant and Xanthine Oxidase Inhibitory Activities of Kecapi (Sandoricum koetjape (Burm.f) Merr.) Leaf Extract. Mater Sci Eng. 2020;833(1):012012. 
9.     Wirata IN, Agung AAG, Arini NW, Nuratni NK. Sentul Fruit (Sandoricum koetjape) Peel as Anti-Inflammation for Gingivitis after Scaling. J Health Med Sci. 2021;4(4). 
10.     Wijaya MD. Ethnomedicinal, Phytochemicals, and Pharmacological Aspects of Sentul (Sandoricum koetjape). Biol Med Natural Prod. 2022;11(1):65-73. doi: 10.14421/biomedich.2022.111.65-73
11.     Rasadah MA, Khozirah S, Aznie AA, Nik MM. Anti-inflammatory agents from Sandoricum koetjape Merr. Phytomedicine. 2004 Feb;11(2-3):261-3. doi: 10.1078/0944-7113-00339. PMID: 15070182.
12.     Ismail IS, Ito H, Mukainaka T, Higashihara H, Enjo F, Tokuda H, et al. Ichthyotoxic and anticarcinogenic effects of triterpenoids from Sandoricum koetjape bark. Biol Pharm Bull. 2003 Sep;26(9):1351-3. doi: 10.1248/bpb.26.1351. PMID: 12951486. 
13.     Warsinah W, Kusumawati E, Sunarto S. Identification of Compound Antifungi of Sandoricum koetjape Stem and Activity to Candida albicans. Tra Med J [Internet]. 2015;16(3):170–8. Available from: https://journal.ugm.ac.id/TradMedJ/article/view/8055
14.     Purnamasari V, Estiasih T, Sujuti H, Widjanarko SB. Identification of phenolic acids of Pandan anggur (Sararanga sinuosa Hemsley) fruits and their potential antiglycation through molecular docking study. J Appl Pharm Sci. 2021;11(2):126–34. 
15.     Holser RA. Principal Component Analysis of Phenolic Acid Spectra. Int Sch Res Notices. 2012;2012:1-5. 
16.     Mechchate H, Es-Safi I, Mohamed Al Kamaly O, Bousta D. Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches. Molecules. 2021 Mar 30;26(7):1932. doi: 10.3390/molecules26071932. PMID: 33808152; PMCID: PMC8037080. 
17.     Nassar ZD, Aisha AF, Ahamed MB, Ismail Z, Abu-Salah KM, Alrokayan SA, Abdul Majid AM. Antiangiogenic properties of Koetjapic acid, a natural triterpene isolated from Sandoricum koetjaoe Merr. Cancer Cell Int. 2011 Apr 27;11(1):12. doi: 10.1186/1475-2867-11-12. PMID: 21524294; PMCID: PMC3111336.  
18.     Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019 Nov-Dec;9(6):574-586. doi: 10.22038/AJP.2019.13475. PMID: 31763216; PMCID: PMC6823530.
19.     Pitaloka AA, NugrohoAP. Digital Transformation in Indonesia Health Care Services: Social, Ethical and Legal Issues. J STI Polic Manage. 2021;6(1):51-66.
20.     Asrullah M, L'Hoir M, Feskens EJM, Melse-Boonstra A. Trend in age at menarche and its association with body weight, body mass index and non-communicable disease prevalence in Indonesia: evidence from the Indonesian Family Life Survey (IFLS). BMC Public Health. 2022 Mar 31;22(1):628. doi: 10.1186/s12889-022-12995-3. PMID: 35361192; PMCID: PMC8969286. 
21.     Hernandez-Anzaldo S, Brglez V, Hemmeryckx B, Leung D, Filep JG, Vance JE, et al. Novel Role for Matrix Metalloproteinase 9 in Modulation of Cholesterol Metabolism. J Am Heart Assoc. 2016 Sep 30;5(10):e004228. doi: 10.1161/JAHA.116.004228. PMID: 27694328; PMCID: PMC5121519. 
22.     Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 2013 Nov;28(6):391-403. doi: 10.1152/physiol.00029.2013. PMID: 24186934; PMCID: PMC3858212. 
23.     Liu KC, Huang AC, Wu PP, Lin HY, Chueh FS, Yang JS, et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep. 2011;26(1):177–84. 
24.     Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003 Feb 1;23(2):283-8. doi: 10.1161/01.atv.0000054195.35121.5e. PMID: 12588772. 
25.     Liu P, Sun M, Sader S. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol. 2006 Feb;22 Suppl B(Suppl B):25B-30B. doi: 10.1016/s0828-282x(06)70983-7. PMID: 16498509; PMCID: PMC2780831. 
26.     Tandon A, Sinha S. Structural insights into the binding of MMP9 inhibitors. Bioinformation. 2011 Jan 22;5(8):310-4. doi: 10.6026/97320630005310. PMID: 21383916; PMCID: PMC3046033. 
27.     Jin UH, Lee JY, Kang SK, Kim JK, Park WH, Kim JG, et al. A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: isolation and identification from methanol extract of Euonymus alatus. Life Sci. 2005 Oct 14;77(22):2760-9. doi: 10.1016/j.lfs.2005.02.028. PMID: 16005473. 
28.     Liu Y, Wang F, Li Z, Mu Y, Yong VW, Xue M. Neuroprotective Effects of Chlorogenic Acid in a Mouse Model of Intracerebral Hemorrhage Associated with Reduced Extracellular Matrix Metalloproteinase Inducer. Biomolecules. 2022 Jul 22;12(8):1020. doi: 10.3390/biom12081020. PMID: 35892330; PMCID: PMC9332591. 
29.     Govindharaj D. Molecular Docking Analysis of Chlorogenic Acid Against Matrix Metalloproteinases ( MMPs ). Biointerface Res Appl Chem. 2020;10(6):6865–73. 
30.     Singh P, Singh A, Pandita D, Lather V. Synthesis and evaluation of a series of caffeic acid derivatives as anticancer agents. Futur J Pharm Sci. 2018;4(2):124–30. 
31.     Vilela Pd, de Oliveira JR, de Barros PP, Leão MV, de Oliveira LD, Jorge AO. In vitro effect of caffeic acid phenethyl ester on matrix metalloproteinases (MMP-1 and MMP-9) and their inhibitor (TIMP-1) in lipopolysaccharide-activated human monocytes. Arch Oral Biol. 2015 Sep;60(9):1196-202. doi: 10.1016/j.archoralbio.2015.04.009. Epub 2015 May 21. PMID: 26058005. 
32.     Kim SR, Jung YR, An HJ, Kim DH, Jang EJ, Choi YJ, et al. Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling. PLoS One. 2013 Sep 16;8(9):e73877. doi: 10.1371/journal.pone.0073877. PMID: 24066081; PMCID: PMC3774756. 
33.     Behrangi N, Namvar N, Ataei M, Dizaji S, Javdani G, Sanati MH. MMP9 Gene Expression Variation by Ingesting Tart Cherry and P-Coumaric Acid During Remyelination in the Cuprizone Mouse Model. Acta Med Iran. 2017 Sep;55(9):539-549. PMID: 29202545. 
34.     Yuan Z, Zhang JP, Yang C. [Study on the effects of ferulic acid on the vascular smooth muscle cell migration in vitro]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012 Feb;32(2):229-33. Chinese. PMID: 22574599. 
35.     Shah A, Amini-Nik S. The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. Int J Mol Sci. 2017 May 16;18(5):1068. doi: 10.3390/ijms18051068. PMID: 28509885; PMCID: PMC5454978.
36.     Jayabalan R, Malbaša R V., Lončar ES, Vitas JS, Sathishkumar M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf. 2014;13(4):538–50.
37.     Damayanti, Prakoeswa CR, Purwanto DA, Endaryanto A, Siswandono. Molecullar Docking of Epigallocatechin-3-gallate (EGCG) on Keap1-Nrf2 Complex Protein in Photoaging Prevention. Medico-legal Update. 2020;20(3):439-45. 
38.     Melton L, Varelis P, Shahidi F. Encyclopedia of Food Chemistry. Elsevier. 2019;1951-1973.
39.     Hossain SJ, Islam MR, Pervin T, Iftekharuzzaman M, Hamdi OAA, Mubassara S, et al. Antibacterial, Anti-Diarrhoeal, Analgesic, Cytotoxic Activities, and GC-MS Profiling of Sonneratia apetala (Buch.-Ham.) Seed. Prev Nutr Food Sci. 2017 Sep;22(3):157-165. doi: 10.3746/pnf.2017.22.3.157. Epub 2017 Sep 30. PMID: 29043212; PMCID: PMC5642796. 
40.     Bare Y, Kuki AD, Daeng Tiring SSN, Rophi AH, Krisnamurti GC, Tirto Sari DR. In Silico Study: Prediction the Potential of Caffeic Acid As ACE inhibitor. El-Hayah. 2020;7(3):94–8. 
41.     Nardini M, Foddai MS. Phenolics Profile and Antioxidant Activity of Special Beers. Molecules. 2020 May 26;25(11):2466. doi: 10.3390/molecules25112466. PMID: 32466403; PMCID: PMC7321254.
42.     Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000 Aug;130(8S Suppl):2073S-85S. doi: 10.1093/jn/130.8.2073S. PMID: 10917926. 
43.     Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000 Aug;130(8S Suppl):2073S-85S. doi: 10.1093/jn/130.8.2073S. PMID: 10917926. 
44.     Olszewska MA, Kwapisz A. Metabolite profiling and antioxidant activity of Prunus padus L. flowers and leaves. Nat Prod Res. 2011 Jul;25(12):1115-31. doi: 10.1080/14786410903230359. PMID: 21347973. 
45.     Abdelli I, Benariba N, Adjdir S, Fekhikher Z, Daoud I, Terki M, et al. In silico evaluation of phenolic compounds as inhibitors of Α-amylase and Α-glucosidase. J Biomol Struct Dyn. 2021 Feb;39(3):816-822. doi: 10.1080/07391102.2020.1718553. Epub 2020 Feb 10. PMID: 31955660.
46.     Sabet R, Sisakht M, Emami L, Sabahi Z. Comparison of COVID-19 virus main protease inhibition activities of phenolic acids by molecular docking. Trends in Pharmaceutical Sciences. 2021; 7(2): 117-126. doi: 10.30476/tips.2021.90386.1083
47.     Ekowati J, Diyah NW, Nofianti KA, Hamid IS, Siswandono. Molecular docking of ferulic acid derivatives on P2Y12 receptor and their ADMET prediction. J Math Fundam Sci. 2018;50(2):203–19. 
48.     Olivares-Morales A, Hatley OJ, Turner D, Galetin A, Aarons L, Rostami-Hodjegan A. The use of ROC analysis for the qualitative prediction of human oral bioavailability from animal data. Pharm Res. 2014 Mar;31(3):720-30. doi: 10.1007/s11095-013-1193-2. Epub 2013 Sep 27. PMID: 24072264; PMCID: PMC4250569. 
49.     Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm. 2018 Nov 30;10(1):148-157. doi: 10.1039/c8md00472b. PMID: 30774861; PMCID: PMC6350845. 
50.     Bakhtyari NG, Raitano G, Benfenati E, Martin T, Young D. Comparison of in silico models for prediction of mutagenicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2013;31(1):45-66. doi: 10.1080/10590501.2013.763576. PMID: 23534394.
51.     Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Nov;14(6):e1804. doi: 10.1002/wnan.1804. PMID: 36416020; PMCID: PMC9787548. 
52.     Freshney RI. Cytotoxicity. In Culture of Animal Cells, R.I. Freshney (Ed.). 2055;359–73
53.     Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol. 2018 May;11(1):5-12. doi: 10.2478/intox-2018-0001. Epub 2018 Aug 6. PMID: 30181707; PMCID: PMC6117820. 
54.     Atale N, Mishra CB, Kohli S, Mongre RK, Prakash A, Kumari S, Yadav UCS, Jeon R, Rani V. Anti-inflammatory Effects of S. cumini Seed Extract on Gelatinase-B (MMP-9) Regulation against Hyperglycemic Cardiomyocyte Stress. Oxid Med Cell Longev. 2021 Mar 3;2021:8839479. doi: 10.1155/2021/8839479. PMID: 33747350; PMCID: PMC7953863. 
55.     Yano H, Nishimiya D, Kawaguchi Y, Tamura M, Hashimoto R. Discovery of potent and specific inhibitors targeting the active site of MMP-9 from the engineered SPINK2 library. PLoS One. 2020 Dec 29;15(12):e0244656. doi: 10.1371/journal.pone.0244656. PMID: 33373399; PMCID: PMC7771667. 
56.     Eckhard U, Huesgen PF, Schilling O, Bellac CL, Butler GS, Cox JH, et al. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol. 2016 Jan;49:37-60. doi: 10.1016/j.matbio.2015.09.003. Epub 2015 Sep 25. PMID: 26407638.
57.     Rudra DS, Pal U, Maiti NC, Reiter RJ, Swarnakar S. Melatonin inhibits matrix metalloproteinase-9 activity by binding to its active site. J Pineal Res. 2013 May;54(4):398-405. doi: 10.1111/jpi.12034. Epub 2013 Jan 17. PMID: 23330737.