Graphene Nanostructures: Pioneering Drug Delivery Vehicles for Targeting Etoposide to Cancer Cells

Document Type : Review Article

Authors

1 Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

10.30476/tips.2025.104810.1268

Abstract

Etoposide (ETO) is a formidable chemotherapeutic agent that holds great promise for individuals grappling with various forms of cancer, including testicular, prostate, bladder, stomach, and lung malignancies. While traditional chemotherapy protocols are often accompanied by significant challenges and discomfort for patients, recent advancements in nanotechnology are revolutionizing the administration of etoposide by incorporating the groundbreaking properties of graphene and its derivatives. Extensive research has highlighted the extraordinary potential of graphene as a targeted delivery system for anticancer therapies. Graphene’s unique structure and biocompatibility allow it to effectively home in on cancer cells, minimizing damage to healthy tissue. By harnessing this remarkable material, we can significantly enhance etoposide's therapeutic effectiveness while mitigating its cytotoxic side effects. This article delves into the exciting possibilities of employing graphene nanostructures as innovative vehicles for Etoposide delivery, illuminating a path toward more effective and patient-friendly cancer treatment options. The integration of advanced materials like graphene not only holds the promise of improving therapeutic outcomes but also signifies a transformative shift in the approach to cancer treatment, offering hope for a brighter future for patients and healthcare providers alike.

Highlights

Khatereh Asadi (Google Scholar)

Ahmad Gholami (Google Scholar)

Keywords


1.    Aliyev E, Filiz V, Khan MM, Lee YJ, Abetz C, Abetz V. Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials (Basel). 2019 Aug 18;9(8):1180. doi: 10.3390/nano9081180. PMID: 31426617; PMCID: PMC6724119.
2.    Chan A, Hertz DL, Morales M, Adams EJ, Gordon S, Tan CJ, et al. Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Support Care Cancer. 2019 Oct;27(10):3729-3737. doi: 10.1007/s00520-019-04987-8. Epub 2019 Jul 30. PMID: 31363906; PMCID: PMC6728179.
3.    Samiraninezhad N, Asadi K, Rezazadeh H, Gholami A. Using chitosan, hyaluronic acid, alginate, and gelatin-based smart biological hydrogels for drug delivery in oral mucosal lesions: A review. Int J Biol Macromol. 2023 Dec 1;252:126573. doi: 10.1016/j.ijbiomac.2023.126573. Epub 2023 Aug 28. PMID: 37648126.
4.    Mousavi SM, Hashemi SA, Mazraedoost S, Yousefi K, Gholami A, Behbudi G, et al. Multifunctional Gold Nanorod for Therapeutic Applications and Pharmaceutical Delivery Considering Cellular Metabolic Responses, Oxidative Stress and Cellular Longevity. Nanomaterials (Basel). 2021 Jul 20;11(7):1868. doi: 10.3390/nano11071868. PMID: 34361251; PMCID: PMC8308363.
5.    Asadi K, Samiraninezhad N, Akbarizadeh AR, Amini A, Gholami A. Stimuli-responsive hydrogel based on natural polymers for breast cancer. Front Chem. 2024 Jan 18;12:1325204. doi: 10.3389/fchem.2024.1325204. PMID: 38304867; PMCID: PMC10830687.
6.    Asadi K, Heidari R, Hamidi M, Ommati MM, Yousefzadeh-Chabok S, Samiraninezhad N, et al. Trinitroglycerin-loaded chitosan nanogels: Shedding light on cytotoxicity, antioxidativity, and antibacterial activities. Int J Biol Macromol. 2024 Apr;265(Pt 2):130654. doi: 10.1016/j.ijbiomac.2024.130654. Epub 2024 Mar 29. PMID: 38553395.
7.    Emadi F, Emadi A, Gholami A. A Comprehensive Insight Towards Pharmaceutical Aspects of Graphene Nanosheets. Curr Pharm Biotechnol. 2020;21(11):1016-1027. doi: 10.2174/1389201021666200318131422. PMID: 32188383.
8.    Gholami A, Emadi F, Nazem M, Aghayi R, Khalvati B, Amini A, et al. Expression of key apoptotic genes in hepatocellular carcinoma cell line treated with etoposide-loaded graphene oxide. J Drug Deliv Technol. 2020;57:101725.
9.    Shimizu E, Yamamoto A, Takahashi Y, Maniwa K, Yoshida S, Mukai J, et al. Effect of alternating combination chemotherapy consisting of cyclophosphamide, doxorubicin, vincristine, cisplatin, and etoposide for small cell lung cancer on hematopoietic progenitors in the peripheral blood. Br J Cancer. 1993 Apr;67(4):798-800. doi: 10.1038/bjc.1993.145. PMID: 8385979; PMCID: PMC1968335.
10.    Cattrini C, Capaia M, Boccardo F, Barboro P. Etoposide and topoisomerase II inhibition for aggressive prostate cancer: Data from a translational study. Cancer Treat Res Commun. 2020;25:100221. doi: 10.1016/j.ctarc.2020.100221. Epub 2020 Oct 13. PMID: 33091733.
11.    Zhang X, Hofmann S, Harbeck N, Jeschke U, Sixou S. Impact of Etoposide on BRCA1 Expression in Various Breast Cancer Cell Lines. Drugs R D. 2017 Dec;17(4):569-583. doi: 10.1007/s40268-017-0208-6. PMID: 28879638; PMCID: PMC5694421.
12.    Mascaux C, Paesmans M, Berghmans T, Branle F, Lafitte JJ, Lemaitre F, et al. A systematic review of the role of etoposide and cisplatin in the chemotherapy of small cell lung cancer with methodology assessment and meta-analysis. Lung Cancer. 2000 Oct;30(1):23-36. doi: 10.1016/s0169-5002(00)00127-6. PMID: 11008007.
13.    Zhang W, Gou P, Dupret JM, Chomienne C, Rodrigues-Lima F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl Oncol. 2021 Oct;14(10):101169. doi: 10.1016/j.tranon.2021.101169. Epub 2021 Jul 6. PMID: 34243013; PMCID: PMC8273223.
14.    Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol. 2024 Jul 31;15:1434137. doi: 10.3389/fphar.2024.1434137. PMID: 39144632; PMCID: PMC11322083.
15.    Zhou J, Li K, Qin H, Xie B, Liao H, Su X, et al. Programmed-stimuli responsive carrier-free multidrug delivery system for highly efficient trimodal combination therapy. J Colloid Interface Sci. 2023 May;637:453-464. doi: 10.1016/j.jcis.2023.01.091. Epub 2023 Jan 23. PMID: 36716669.
16.    Ashrafizadeh M, Delfi M, Zarrabi A, Bigham A, Sharifi E, Rabiee N, et al. Stimuli-responsive liposomal nanoformulations in cancer therapy: Pre-clinical & clinical approaches. J Control Release. 2022 Nov;351:50-80. doi: 10.1016/j.jconrel.2022.08.001. Epub 2022 Sep 20. PMID: 35934254.
17.    Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019 Nov;9(6):1145-1162. doi: 10.1016/j.apsb.2019.08.003. Epub 2019 Aug 19. PMID: 31867161; PMCID: PMC6900554.
18.    Shahriar SMS, Andrabi SM, Islam F, An JM, Schindler SJ, Matis MP, et al. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics. 2022 Dec 3;14(12):2712. doi: 10.3390/pharmaceutics14122712. PMID: 36559206; PMCID: PMC9784306.
19.    Sung YK, Kim SW. Recent advances in polymeric drug delivery systems. Biomater Res. 2020 Jun 6;24:12. doi: 10.1186/s40824-020-00190-7. PMID: 32537239; PMCID: PMC7285724.
20.    Alfei S, Marengo B, Domenicotti C. Polyester-Based Dendrimer Nanoparticles Combined with Etoposide Have an Improved Cytotoxic and Pro-Oxidant Effect on Human Neuroblastoma Cells. Antioxidants (Basel). 2020 Jan 6;9(1):50. doi: 10.3390/antiox9010050. PMID: 31935872; PMCID: PMC7022520.
21.    Mohammadi Ghalaei P, Varshosaz J, Sadeghi Aliabadi H. Evaluating Cytotoxicity of Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide on SK-OV-3 Cells. J Drug Deliv. 2014;2014:746325. doi: 10.1155/2014/746325. Epub 2014 Apr 24. PMID: 24868467; PMCID: PMC4020396.
22.    Zhang M, Hagan CT 4th, Foley H, Tian X, Yang F, Au KM, et al. Co-delivery of etoposide and cisplatin in dual-drug loaded nanoparticles synergistically improves chemoradiotherapy in non-small cell lung cancer models. Acta Biomater. 2021 Apr 1;124:327-335. doi: 10.1016/j.actbio.2021.02.001. Epub 2021 Feb 5. PMID: 33556606; PMCID: PMC9083847.
23.    Maleki H, Naghibzadeh M, Amani A, Adabi M, Khosravani M. Preparation of paclitaxel and etoposide co-loaded mPEG-PLGA nanoparticles: an investigation with artificial neural network. J Pharm Innov. 2021;16:11-25.
24.    Afarin R, Ahmadpour F, Hatami M, Monjezi S, Igder S. Combination of Etoposide and quercetin-loaded solid lipid nanoparticles Potentiates apoptotic effects on MDA-MB-231 breast cancer cells. Heliyon. 2024 May 24;10(11):e31925. doi: 10.1016/j.heliyon.2024.e31925. PMID: 38841445; PMCID: PMC11152947.
25.    Zare Kazemabadi F, Heydarinasab A, Akbarzadeh A, Ardjmand M. Preparation, characterization and in vitro evaluation of PEGylated nanoliposomal containing etoposide on lung cancer. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):3222-3230. doi: 10.1080/21691401.2019.1646265. PMID: 31373225.
26.    Emadi F, Amini A, Ghasemi Y, Gholami A. Graphene: recent advances in engineering, medical and biological sciences, and future prospective. Trends Pharm Sci. 2018;4(3):131-8.
27.    Ares P, Novoselov KS. Recent advances in graphene and other 2D materials. Nano Mater Sci. 2022;4(1):3-9.
28.    Dresselhaus MS, Araujo PT. Perspectives on the 2010 Nobel Prize in physics for graphene. ACS Nano. 2010 Nov 23;4(11):6297-302. doi: 10.1021/nn1029789. PMID: 21090813.
29.    Tian J, Wu S, Yin X, Wu W. Novel preparation of hydrophilic graphene/graphene oxide nanosheets for supercapacitor electrode. Appl Surf Sci. 2019;496:143696.
30.    Geim AK. Graphene: status and prospects. Science. 2009;324(5934):1530-4.
31.    Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Theranostics. 2015 Mar 28;5(7):710-23. doi: 10.7150/thno.11387. PMID: 25897336; PMCID: PMC4402495.
32.    Soleymani J, Hasanzadeh M, Somi MH, Ozkan SA, Jouyban A. Targeting and sensing of some cancer cells using folate bioreceptor functionalized nitrogen-doped graphene quantum dots. Int J Biol Macromol. 2018 Oct 15;118(Pt A):1021-1034. doi: 10.1016/j.ijbiomac.2018.06.183. Epub 2018 Jul 2. PMID: 30001595.
33.    Chung S, Revia RA, Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv Mater. 2021 Jun;33(22):e1904362. doi: 10.1002/adma.201904362. Epub 2019 Dec 12. PMID: 31833101; PMCID: PMC7289657.
34.    Mousavi SM, Kalashgrani MY, Javanmardi N, Riazi M, Akmal MH, Rahmanian V, et al. Recent breakthroughs in graphene quantum dot-enhanced sonodynamic and photodynamic therapy. J Mater Chem B. 2024;12(29):7041-62.
35.    Yang L, Zhang S, Chen Z, Guo Y, Luan J, Geng Z, et al. Design and preparation of graphene/poly (ether ether ketone) composites with excellent electrical conductivity. J Mater Sci. 2014;49(5):2372-82.
36.    Gholami A, Emadi F, Amini A, Shokripour M, Chashmpoosh M, Omidifar N. Functionalization of graphene oxide nanosheets can reduce their cytotoxicity to dental pulp stem cells. J Nanomater. 2020;2020(1):6942707.
37.     Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013 Mar 1;53:38-49.
38.    Siklitskaya A, Gacka E, Larowska D, Mazurkiewicz-Pawlicka M, Malolepszy A, Stobiński L, et al. Lerf-Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins. Sci Rep. 2021 Apr 12;11(1):7977. doi: 10.1038/s41598-021-86880-1. PMID: 33846412; PMCID: PMC8041773.
39.    Mousavi SM, Nezhad FF, Ghahramani Y, Binazadeh M, Javidi Z, Azhdari R, et al. Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem Biodivers. 2024 Jul;21(7):e202301288. doi: 10.1002/cbdv.202301288. Epub 2024 Jun 11. PMID: 38697942.
40.    Gholami A, Mousavi SM, Masoumzadeh R, Binazadeh M, Bagheri Lankarani K, Omidifar N, et al. Advanced Theranostic Strategies for Viral Hepatitis Using Carbon Nanostructures. Micromachines. 2023;14(6):1185.
41.    Mousavi SM, Yousefi K, Hashemi SA, Afsa M, BahranI S, Gholami A, et al. Renewable Carbon Nanomaterials: Novel Resources for Dental Tissue Engineering. Nanomaterials (Basel). 2021 Oct 22;11(11):2800. doi: 10.3390/nano11112800. PMID: 34835565; PMCID: PMC8622722.
42.    Gholami A, Farjami F, Ghasemi Y. The Development of an Amperometric Enzyme Biosensor Based on a Polyaniline‐Multiwalled Carbon Nanocomposite for the Detection of a Chemotherapeutic Agent in Serum Samples from Patients. J Sens. 2021;2021(1):5515728.
43.    Rezaei Abbas Abad F, Pourmadadi M, Abdouss M, Behzadmehr R, Rahdar A, Pandey S. Chitosan-Carbon nanotube Composite: An approach for controlled release of Quercetin, Modified with carboxymethyl Cellulose, for potential Anticancer therapy. Inorg Chem Commun. 2023;158:111621.
44.    Kavousi M, Chavoshi MS. Effect of coated carbon nanotubes with chitosan and cover of flaxseed in the induction of MDA-MB-231 apoptosis by analyzing the expression of Bax and Bcl-2. Meta Gene. 2020;26:100807.
45.    Son KH, Hong JH, Lee JW. Carbon nanotubes as cancer therapeutic carriers and mediators. Int J Nanomedicine. 2016 Oct 7;11:5163-5185. doi: 10.2147/IJN.S112660. PMID: 27785021; PMCID: PMC5066859.
46.    Chen C, Xie XX, Zhou Q, Zhang FY, Wang QL, Liu YQ, et al. EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. Nanotechnology. 2012 Feb 3;23(4):045104. doi: 10.1088/0957-4484/23/4/045104. Epub 2012 Jan 6. PMID: 22222202.
47.    Heger Z, Moulick A, Nguyen HV, Kremplova M, Kopel P, Hynek D, et al. Characterization of Multi-Walled Carbon Nanotubes Double-Functionalization with Cytostatic Drug Etoposide and Phosphorothioate Oligodeoxynucleotides. Int J Electrochem Sci. 2015;10(9):7707-19.
48.    Pan F, Khan M, Ragab AH, Javed E, Alsalmah HA, Khan I, et al. Recent advances in the structure and biomedical applications of nanodiamonds and their future perspectives. Mater Des. 2023;233:112179.
49.    Nunn N, Torelli M, McGuire G, Shenderova O. Nanodiamond: A high impact nanomaterial. Curr. Opin Solid State Mater Sci. 2017;21(1):1-9.
50.    Chauhan S, Jain N, Nagaich U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J Pharm Anal. 2020 Feb;10(1):1-12. doi: 10.1016/j.jpha.2019.09.003. Epub 2019 Oct 1. PMID: 32123595; PMCID: PMC7037532.
51.    Solarska K, Gajewska A, Skolimowski J, Woś R, Bartosz G, Mitura K. Effect of non-modified and modified nanodiamond particles by Fenton reaction on human endothelial cells. Int J Manuf Eng. 2010;43(2):603-7.
52.    Gholami A, Habibi B, Hosseini SA, Matin AA, Samadi N. Controlled release of anticancer drugs via the magnetic magnesium iron nanoparticles modified by graphene oxide and polyvinyl alcohol: Paclitaxel and docetaxel. Nanomed J. 2021;8:200-10.
53.    Hashemi SA, Mousavi SM, Bahrani S, Gholami A, Chiang W-H, Yousefi K, et al. Bio-enhanced polyrhodanine/graphene Oxide/Fe3O4 nanocomposite with kombucha solvent supernatant as ultra-sensitive biosensor for detection of doxorubicin hydrochloride in biological fluids. Mater Chem Phys. 2022;279:125743.
54.    Emadi F, Amini A, Gholami A, Ghasemi Y. Functionalized Graphene Oxide with Chitosan for Protein Nanocarriers to Protect against Enzymatic Cleavage and Retain Collagenase Activity. Sci Rep. 2017 Feb 10;7:42258. doi: 10.1038/srep42258. PMID: 28186169; PMCID: PMC5301474.
55.    Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, et al. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano. 2012 Mar 27;6(3):2361-70. doi: 10.1021/nn204625e. Epub 2012 Feb 16. PMID: 22339280; PMCID: PMC3314116.
56.    Shi S, Yang K, Hong H, Valdovinos HF, Nayak TR, Zhang Y, Theuer CP, Barnhart TE, Liu Z, Cai W. Tumor vasculature targeting and imaging in living mice with reduced graphene oxide. Biomaterials. 2013 Apr;34(12):3002-9. doi: 10.1016/j.biomaterials.2013.01.047. Epub 2013 Jan 29. PMID: 23374706; PMCID: PMC3570619.
57.    Ayyaru S, Ahn Y-H. Application of sulfonic acid group functionalized graphene oxide to improve hydrophilicity, permeability, and antifouling of PVDF nanocomposite ultrafiltration membranes. J Memb Sci. 2017;525:210-9.
58.    Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev. 2017;46(15):4400-16.
59.    Bottari G, Herranz MÁ, Wibmer L, Volland M, Rodríguez-Pérez L, Guldi DM, et al. Chemical functionalization and characterization of graphene-based materials. Chem Soc Rev. 2017;46(15):4464-500.
60.    Eskandari F, Abbaszadegan A, Gholami A, Ghahramani Y. The antimicrobial efficacy of graphene oxide, double antibiotic paste, and their combination against Enterococcus faecalis in the root canal treatment. BMC Oral Health. 2023 Jan 13;23(1):20. doi: 10.1186/s12903-023-02718-4. PMID: 36639767; PMCID: PMC9840282.
61.    Mousavi SM, Hashemi SA, Ghahramani Y, Azhdari R, Yousefi K, Gholami A, et al. Antiproliferative and Apoptotic Effects of Graphene Oxide @AlFu MOF Based Saponin Natural Product on OSCC Line. Pharmaceuticals (Basel). 2022 Sep 12;15(9):1137. doi: 10.3390/ph15091137. PMID: 36145358; PMCID: PMC9504826.
62.    Rezaei A, Aligholi H, Zeraatpisheh Z, Gholami A, Mirzaei E. Collagen/chitosan-functionalized graphene oxide hydrogel provide a 3D matrix for neural stem/precursor cells survival, adhesion, infiltration and migration. J Bioact Compat Pol. 2021;36(4):296-313.
63.    Tonelli FM, Goulart VA, Gomes KN, Ladeira MS, Santos AK, Lorençon E, Ladeira LO, Resende RR. Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine (Lond). 2015;10(15):2423-50. doi: 10.2217/nnm.15.65. Epub 2015 Aug 5. PMID: 26244905.
64.    Chakraborty A, Das A, Raha S, Barui A. Size-dependent apoptotic activity of gold nanoparticles on osteosarcoma cells correlated with SERS signal. J Photochem Photobiol B. 2020 Jan;203:111778. doi: 10.1016/j.jphotobiol.2020.111778. Epub 2020 Jan 7. PMID: 31931389.
65.    Jia PP, Sun T, Junaid M, Yang L, Ma YB, Cui ZS, et al. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. Environ Pollut. 2019 Apr;247:595-606. doi: 10.1016/j.envpol.2019.01.072. Epub 2019 Jan 24. PMID: 30708322.
66.    Gurunathan S, Kang MH, Jeyaraj M, Kim JH. Differential Cytotoxicity of Different Sizes of Graphene Oxide Nanoparticles in Leydig (TM3) and Sertoli (TM4) Cells. Nanomaterials (Basel). 2019 Jan 22;9(2):139. doi: 10.3390/nano9020139. PMID: 30678270; PMCID: PMC6410280.
67.    Gurunathan S, Arsalan Iqbal M, Qasim M, Park CH, Yoo H, Hwang JH, Uhm SJ, Song H, Park C, Do JT, Choi Y, Kim JH, Hong K. Evaluation of Graphene Oxide Induced Cellular Toxicity and Transcriptome Analysis in Human Embryonic Kidney Cells. Nanomaterials (Basel). 2019 Jul 2;9(7):969. doi: 10.3390/nano9070969. PMID: 31269699; PMCID: PMC6669460.
68.    Zhang L, Ouyang S, Zhang H, Qiu M, Dai Y, Wang S, et al. Graphene oxide induces dose-dependent lung injury in rats by regulating autophagy. Exp Ther Med. 2021 May;21(5):462. doi: 10.3892/etm.2021.9893. Epub 2021 Mar 5. PMID: 33747194; PMCID: PMC7967850.
69.    Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials. 2013 Apr;34(11):2787-95. doi: 10.1016/j.biomaterials.2013.01.001. Epub 2013 Jan 20. PMID: 23340196.
70.    Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release. 2022 Nov;351:923-940. doi: 10.1016/j.jconrel.2022.10.005. Epub 2022 Oct 11. PMID: 36216174.
71.    Mauro N, Scialabba C, Agnello S, Cavallaro G, Giammona G. Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110201. doi: 10.1016/j.msec.2019.110201. Epub 2019 Sep 13. PMID: 31761243.
72.    Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review. Eur J Med Chem. 2023 Nov 5;259:115676. doi: 10.1016/j.ejmech.2023.115676. Epub 2023 Jul 23. PMID: 37499287.
73.    Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep. 2022 Feb 4;12(1):1959. doi: 10.1038/s41598-022-05793-9. PMID: 35121783; PMCID: PMC8816945.
74.    Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Wang MH. Preparation, characterization and anti-cancer activity of graphene oxide-‑silver nanocomposite. J Photochem Photobiol B. 2020 Sep;210:111984. doi: 10.1016/j.jphotobiol.2020.111984. Epub 2020 Jul 30. PMID: 32771914.
75.    Li R, Wang Y, Du J, Wang X, Duan A, Gao R, et al. Graphene oxide loaded with tumor-targeted peptide and anti-cancer drugs for cancer target therapy. Sci Rep. 2021 Jan 18;11(1):1725. doi: 10.1038/s41598-021-81218-3. PMID: 33462277; PMCID: PMC7813822.
76.    Miao W, Shim G, Lee S, Lee S, Choe YS, Oh YK. Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer. Biomaterials. 2013 Apr;34(13):3402-10. doi: 10.1016/j.biomaterials.2013.01.010. Epub 2013 Feb 4. PMID: 23380350.
77.    Pei X, Zhu Z, Gan Z, Chen J, Zhang X, Cheng X, et al. PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports. 2020;10(1):2717.