Preparation and In-vitro Characterization of Giant Superparamagnetic Nanobeads: A Proof of Concept

Document Type : Original Article

Authors

1 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

2 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

3 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.

4 Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran

5 Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran

6 Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.

Abstract

The isolation of biomolecules from complex biological environments is a crucial step in the accurate analysis of biomarkers, which in turn is vital for enhancing the precision of medical diagnoses. Among the various techniques employed for biomarker separation, immunomagnetic separation utilizing superparamagnetic iron oxide nanoparticles (SPIONs) has emerged as a promising approach. Nonetheless, the diminutive size of SPIONs poses challenges regarding their robustness, particularly in the efficient extraction of macromolecules from diverse biological samples. This study addresses this pressing concern by investigating methods to enhance the magnetic properties of these nanoparticles. Specifically, we focus on increasing the magnetic unit size while preserving their superparamagnetic characteristics. Through a novel methodological approach, we successfully created giant superparamagnetic nanoclusters via click binding of biotinylated SPIONs with avidin macromolecules. These large nanoclusters exhibited favorable magnetic properties, indicating their potential for significant application in biomarker discovery and analysis, thus paving the way for advancements in biomedical diagnostics. 

Highlights

Mohammad Javad Raee (Google Scholar)

Ali Mohammad Tamaddon (Google Scholar)

Dena Firouzabadi (Google Scholar)

Fakhrossadat Farvadi (Google Scholar)

Keywords


1.    Ball JR, Balogh E. Improving Diagnosis in Health Care: Highlights of a Report From the National Academies of Sciences, Engineering, and Medicine. Ann Intern Med. 2016 Jan 5;164(1):59-61. doi: 10.7326/M15-2256. Epub 2015 Sep 29. PMID: 26414299.
2.    Fairchild A. Palliative radiotherapy for bone metastases from lung cancer: Evidence-based medicine? World J Clin Oncol. 2014 Dec 10;5(5):845-57. doi: 10.5306/wjco.v5.i5.845. PMID: 25493222; PMCID: PMC4259946.
3.    Safarik I, Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol. 2004 Nov 26;2(1):7. doi: 10.1186/1477-044X-2-7. PMID: 15566570; PMCID: PMC544596.
4.    Fatima H, Kim K-S. Magnetic nanoparticles for bioseparation. Korean J Chem Eng. 2017;34:589-99.
5.    Vangijzegem T, Lecomte V, Ternad I, Van Leuven L, Muller RN, Stanicki D, et al. Superparamagnetic Iron Oxide Nanoparticles (SPION): From Fundamentals to State-of-the-Art Innovative Applications for Cancer Therapy. Pharmaceutics. 2023 Jan 10;15(1):236. doi: 10.3390/pharmaceutics15010236. PMID: 36678868; PMCID: PMC9861355.
6.    UMN. 2. Classes of Magnetic Materials: University f Minnesota;  [cited 2025]. Available from: https://cse.umn.edu/irm/2-classes-magnetic-materials.
7.    Olsvik O, Popovic T, Skjerve E, Cudjoe KS, Hornes E, Ugelstad J, Uhlén M. Magnetic separation techniques in diagnostic microbiology. Clin Microbiol Rev. 1994 Jan;7(1):43-54. doi: 10.1128/CMR.7.1.43. PMID: 8118790; PMCID: PMC358305.
8.    Sun C, Hsieh YP, Ma S, Geng S, Cao Z, Li L, Lu C. Immunomagnetic separation of tumor initiating cells by screening two surface markers. Sci Rep. 2017 Jan 11;7:40632. doi: 10.1038/srep40632. PMID: 28074882; PMCID: PMC5225414.
9.    Park H, Hwang MP, Lee KH. Immunomagnetic nanoparticle-based assays for detection of biomarkers. Int J Nanomedicine. 2013;8:4543-52. doi: 10.2147/IJN.S51893. Epub 2013 Nov 22. PMID: 24285924; PMCID: PMC3841294.
10.    Li F, Xu H, Sun P, Hu Z, Aguilar ZP. Size effects of magnetic beads in circulating tumour cells magnetic capture based on streptavidin-biotin complexation. IET Nanobiotechnol. 2019 Feb;13(1):6-11. doi: 10.1049/iet-nbt.2018.5104. PMID: 30964030; PMCID: PMC8675959.
11.    Antone AJ, Sun Z, Bao Y. Preparation and application of iron oxide nanoclusters. Magnetochemistry. 2019;5(3):45.
12.    Sung Lee J, Myung Cha J, Young Yoon H, Lee JK, Keun Kim Y. Magnetic multi-granule nanoclusters: A model system that exhibits universal size effect of magnetic coercivity. Sci Rep. 2015 Jul 17;5:12135. doi: 10.1038/srep12135. PMID: 26183842; PMCID: PMC4505357.
13.    Lyu Y, Martínez Á, D'Incà F, Mancin F, Scrimin P. The Biotin-Avidin Interaction in Biotinylated Gold Nanoparticles and the Modulation of Their Aggregation. Nanomaterials (Basel). 2021 Jun 13;11(6):1559. doi: 10.3390/nano11061559. PMID: 34199307; PMCID: PMC8231960.
14.    Raee MJ, Ebrahiminezhad A, Gholami A, Ghoshoon MB, Ghasemi Y. Magnetic immobilization of recombinant E. coli producing extracellular asparaginase: an effective way to intensify downstream process. Sep Sci Technol. 2018;53(9):1397-404.
15.    Chauhan RP, Singh G, Singh S, Bag N, Patra M, Vadera SR, Mishra AK, Mathur R. Biotinylated magnetic nanoparticles for pretargeting: synthesis and characterization study. Cancer Nanotechnol. 2011;2(1-6):111-120. doi: 10.1007/s12645-011-0021-9. Epub 2011 Sep 3. PMID: 26069490; PMCID: PMC4452138.
16.    Suhel A, Rahim NA, Rahman MRA, Ahmad KAB. Engine's behaviour on magnetite nanoparticles as additive and hydrogen addition of chicken fat methyl ester fuelled DICI engine: a dual fuel approach. Int J Hydrog Energy. 2021;46(27):14824-43.
17.    PubChem. National Library of Medicine (NIH); 2025. Available from: https://pubchem.ncbi.nlm.nih.gov/.
18.    Swamy MJ, Heimburg T, Marsh D. Fourier-transform infrared spectroscopic studies on avidin secondary structure and complexation with biotin and biotin-lipid assemblies. Biophys J. 1996 Aug;71(2):840-7. doi: 10.1016/S0006-3495(96)79285-8. PMID: 8842222; PMCID: PMC1233540.
19.    Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015 Apr 28;16(2):023501. doi: 10.1088/1468-6996/16/2/023501. PMID: 27877761; PMCID: PMC5036481.
20.    Sezer N, Arı İ, Bicer Y, Koc M. Superparamagnetic nanoarchitectures: Multimodal functionalities and applications. J Magn Magn Mater. 2021;538:168300.
21.    Fearon M, Chantrell R, Wohlfarth E. A theoretical study of interaction effects on the remanence curves of particulate dispersions. J Magn Magn Mater. 1990;86(2-3):197-206.
22.    Givord D, Rossignol M, Barthem VM. The physics of coercivity. J Magn Magn Mater. 2003;1;258:1-5.
23.    Kalubowilage M, Janik K, Bossmann SH. Magnetic nanomaterials for magnetically-aided drug delivery and hyperthermia. Appl Sci. 2019;9(14):2927
24.    Shah SAH. Vibrating sample magnetometery: analysis and construction. Syed Babar Ali School of Science and Engineering, LUMS. 2013.
25.    Rybak JN, Scheurer SB, Neri D, Elia G. Purification of biotinylated proteins on streptavidin resin: a protocol for quantitative elution. Proteomics. 2004 Aug;4(8):2296-9. doi: 10.1002/pmic.200300780. PMID: 15274123.
26.    Durmus Z, Kavas H, Toprak MS, Baykal A, Altınçekiç TG, Aslan A, et al. L-lysine coated iron oxide nanoparticles: synthesis, structural and conductivity characterization. J Alloys Compd. 2009;484(1-2):371-6.
27.    Jain A, Barve A, Zhao Z, Jin W, Cheng K. Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Mol Pharm. 2017 May 1;14(5):1517-1527. doi: 10.1021/acs.molpharmaceut.6b00933. Epub 2017 Jan 13. PMID: 28026957; PMCID: PMC6628714.
28.    Bhattacharjee S. DLS and zeta potential - What they are and what they are not? J Control Release. 2016 Aug 10;235:337-351. doi: 10.1016/j.jconrel.2016.06.017. Epub 2016 Jun 10. PMID: 27297779.