Study of the antioxidant effects of Eremostachys laciniata rhizome extracts in isolated rat hepatocytes

Document Type : Research(Original) Article

Authors

Pharmacology department of Tabriz medical university

Abstract

Eremostachys laciniata, having rich flavonoids content, is expected to have a considerable antioxidant effects. We used ACMS (Accelerated cytotoxic or protective mechanism screening technique) to evaluate possible antioxidant effect of E. laciniata rhizome against oxidative cell damages induced by different types of oxidative stress such as iron-8-hydroxyquinolin (IQ) complex and copper in freshly isolated liver cells. The extracts were prepared with n-hexane, dichloromethane and methanol. Hepatocytes were isolated from male Sprague-Dawley rats by a two-step collagenase perfusion. Cell viability was measured by trypan blue exclusion method. DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay was used to evaluate the antioxidant activity. ROS formation was measured by using DCFDA (2, 7-dichlorofluorescin diacetate) probe, mitochondrial membrane potential (MMP) was assessed by rhodamine 123 fluorescence and lipid peroxidation was determined by thiobarbituric acid reactive substances (TBARS) assay. The MET extract was demonstrated to possess a significant radical scavenging activity (RC50%=0.212). Unlike MET extract, the n-hexane and dichloromethane extracts showed toxic effects in cell suspensions. The MET extract significantly decreased cell death and ROS formation induced by IQ complex and copper and demonstrated protective effects against copper-induced mitochondrial membrane potential collapse and lipid peroxidation. The protection induced by MET extract can be attributed to antioxidant characteristics of phenylethanoids content.

Keywords


  1. Facecchia K, Fochesato LA, Ray SD, Stohs SJ, Pandey S. Oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies. J Toxicol. 2011;2011:683728. doi: 10.1155/2011/683728. PubMed Central PMCID: 3139184.
  2. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547-81.
  3. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7(1):65-74. doi: 10.2174/157015909787602823. PubMed Central PMCID: 2724665.
  4. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010;4(8):118-26. doi: 10.4103/0973-7847.70902. PubMed Central PMCID: 3249911.
  5. National Germplasm Resources Laboratory. 2013 Available from: http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?15378.
  6. Modaressi M, Delazar A, Nazemiyeh H, Fathi-Azad F, Smith E, Rahman MM, et al. Antibacterial iridoid glucosides from Eremostachys laciniata. Phytother Res. 2009;23(1):99-103. doi: 10.1002/ptr.2568.
  7. Said O, Khalil K, Fulder S, Azaizeh H. Ethnopharmacological survey of medicinal herbs in Israel, the Golan Heights and the West Bank region. J Ethnopharmacol. 2002;83(3):251-65.
  8. Khan S, Nisar M, Rehman W, Khan R, Nasir F. Anti-inflammatory study on crude methanol extract and different fractions of Eremostachys laciniata. Pharm Biol. 2010;48(10):1115-8. doi: 10.3109/13880200903517950.
  9. Khan S, Nisar M, Simjee SU, Rehman W, khan R, Jan I, et al. Evaluation of micronutrients level and antinociceptive property of Eremostachys laciniata (L) Bunge. African Journal of Biotechnology. 2010;9(5):775-7.
  10. Erdemoglu N, Turan NN, Cakici I, Sener B, Aydin A. Antioxidant activities of some Lamiaceae plant extracts. Phytother Res. 2006;20(1):9-13. doi: 10.1002/ptr.1816.
  11. Delazar A, Byres M, Gibbons S, Kumarasamy Y, Modarresi M, Nahar L, et al. Iridoid glycosides from Eremostachys glabra. J Nat Prod. 2004;67(9):1584-7. doi: 10.1021/np040044b.
  12. Delazar A, Sarker SD, Nahar L, Jalali SB, Modaresi M, Hamedeyazdan S, et al. Rhizomes of Eremostachys laciniata: Isolation and Structure Elucidation of Chemical Constituents and a Clinical Trial on Inflammatory Diseases. Adv Pharm Bull. 2013;3(2):385-93. doi: 10.5681/apb.2013.062. PubMed Central PMCID: 3848234.
  13. Navaei MN, Mirza M. Chemical composition of the oil of Eremostachys laciniata (L.) Bunge from Iran. Flavour and Fragrance Journal. 2006;21(4):645-6. doi: 10.1002/ffj.1635.
  14. Eghbal MA, Pennefather PS, O'Brien PJ. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology. 2004;203(1-3):69-76. doi: 10.1016/j.tox.2004.05.020.
  15. Moldeus P, Hogberg J, Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60-71.
  16. Baur H, Kasperek S, Pfaff E. Criteria of viability of isolated liver cells. Hoppe Seylers Z Physiol Chem. 1975;356(6):827-38.
  17. Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chemistry. 2009;113(4):1202-5. doi: http://dx.doi.org/10.1016/j.foodchem.2008.08.008.
  18. Gomes A, Fernandes E, Lima JL. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods. 2005;65(2-3):45-80. doi: 10.1016/j.jbbm.2005.10.003.
  19. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983;130(4):1910-7.
  20. Andersson BS, Aw TY, Jones DP. Mitochondrial transmembrane potential and pH gradient during anoxia. Am J Physiol. 1987;252(4 Pt 1):C349-55.
  21. Baracca A, Sgarbi G, Solaini G, Lenaz G. Rhodamine 123 as a probe of mitochondrial membrane potential: evaluation of proton flux through F(0) during ATP synthesis. Biochim Biophys Acta. 2003;1606(1-3):137-46.
  22. Jakubowski W, Bartosz G. Estimation of oxidative stress in Saccharomyces cerevisae with fluorescent probes. Int J Biochem Cell Biol. 1997;29(11):1297-301.
  23. Shangari N, O'Brien PJ. The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol. 2004;68(7):1433-42. doi: 10.1016/j.bcp.2004.06.013.
  24. Heidari R, Babaei H, Eghbal MA. Cytoprotective effects of taurine against toxicity induced by isoniazid and hydrazine in isolated rat hepatocytes. Arh Hig Rada Toksikol. 2013;64(2):15-24. doi: 10.2478/10004-1254-64-2013-2297.
  25. O'Brien PJ, Siraki AG. Accelerated cytotoxicity mechanism screening using drug metabolising enzyme modulators. Curr Drug Metab. 2005;6(2):101-9.
  26. Ryter SW, Tyrrell RM. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic Biol Med. 2000;28(2):289-309.
  27. Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202(2):199-211. doi: 10.1016/j.taap.2004.06.021.
  28. Leanderson P, Tagesson C. Iron bound to the lipophilic iron chelator, 8-hydroxyquinoline, causes DNA strand breakage in cultured lung cells. Carcinogenesis. 1996;17(3):545-50.
  29. Papavassiliou AG. Chemical nucleases as probes for studying DNA-protein interactions. Biochem J. 1995;305 ( Pt 2):345-57PubMed Central PMCID: 1136367.
  30. Stadtman ER, Levine RL. Protein oxidation. Ann N Y Acad Sci. 2000;899:191-208.