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Abstract
 A high proportion of breast tumors are hormone-dependent, implying that endogenous estrogens 
play a critical role in cancer cell proliferation. One of the most effective strategies for the treatment of 
breast cancer is the reduction of estrogen level by inhibiting aromatase enzyme, which is responsible for 
catalyzing the rate-limiting step in estrogen biosynthesis. A series of azole derivatives as potential aroma-
tase inhibitors were subjected to two different drug design methodologies: QSAR and molecular docking 
simulation. MLR, FA-MLR, PCR, and GA-PLS were employed to explore connections between the struc-
tural parameters and aromatase inhibitory activity. GA-PLS represented superior results and a model with a 
high statistical quality (R2=0.86 and Q2=0.83) for predicting the inhibitory activity. The results can provide 
useful information for the development of more potent aromatase inhibitors.
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1. Introduction
 The two main categories of drug design 
methods, namely (i) ligand-based and (ii) struc-
ture-based approaches, are usually regarded as 
complementary methodologies in modern com-
putational drug designing. These approaches rely 
on the physicochemical and structural information 
of the drug molecule, and the three dimensional 
structure of the target macromolecule in its bind-
ing (active) site, respectively. 
 Quantitative structure activity relation-
ships (QSAR) studies are the most common re-
searches in the ligand-based methods (1,2). In 
QSAR researches, a statistical model correlating 
the structure and biological activity is found. This 
model is then applied to screen any number of mol-
ecules even those that have not yet been synthe-

sized to predict their biological activity. Although 
numerous physicochemical descriptors have been 
used in such studies, QSAR models are unable to 
explain some facts in ligand-target interactions. 
The strength of hydrogen bonds, the influence of 
desolation energies on drug-receptor bindings, and 
steric interactions of the ligand with the binding 
site are examples of limitations of QSAR studies. 
 The considerable body of information 
about the high resolution three dimensional struc-
tures of drug targets, including receptors, chan-
nels, enzymes, and transporter proteins, provides a 
growing basis for the structure-based drug design 
approach. Ligand-target interactions are modeled 
through molecular docking simulation technique 
(3-6).The techniques and algorithms employed for 
ligand-protein binding energy prediction have a 
number of limitations. A time-consuming process 
for large numbers of molecules, insufficient sam-
pling of protein flexibility, and inaccurate scoring 
functions applied to rank the ligands interacting 
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with the target protein are some of these limita-
tions. Hence, the simultaneous application of the 
two approaches, ligand-based and structure-based, 
helps medicinal chemists design more potent li-
gands. 
 Aromatase is a cytochrome P450 enzyme 
complex, which catalyzes the conversion of andro-
gens to estrogens. Inhibition of this enzyme is cru-
cial for the treatment of estrogen-dependent breast 
cancer (7-12). Aromatase inhibitors are used as 
the first-line therapy in postmenopausal women 
with metastatic; hormone receptor-positive breast 
cancer (9-10). Aromatase inhibitors are used in 
some non-tumorigenic conditions such as preco-
cious puberty and gynecomastia in males (9). Aro-
matase inhibitors include both steroidal and non-
steroidal subtypes (7). Some aromatase inhibitors 
with steroidal structure such as exemestane are 
enzyme activated irreversible inhibitors of aroma-
tase. Non-steroidal aromatase inhibitors with azole 
moiety such as letrozole, fadrozole, and anstrazole 
are competitive inhibitors and bind to the Fe2+ 
present in heme group of the enzyme (7-13). Other 
non-steroidal aromatase inhibitors have the flavon 
structure such as chrysin that is a natural product 
and has an in vitro inhibitory action similar to ami-
noglutethimide. Chrysin is not used therapeuti-
cally as an aromatase inhibitor due to its low oral 
bioavailability (13).
 In the present paper, two different drug 
design methodologies, QSAR and molecular 
docking simulations, were applied for a series of 
200 azole analogues with the ability to inhibit the  
aromatase enzyme (14). A large descriptor set,  
including topological, geometrical, constitution-
al, functional group, electrostatic, and chemical  
factors, was used to describe the physico-
chemical properties of the molecules. Dif-
ferent  statistical methods were applied to 
model the relationship between the struc-
tural features and the aromatase inhibitory  
activity of the studied compounds. These meth-
ods were: (i) multiple linear regression (MLR) (ii) 
genetic algorithm-partial least squares (GA-PLS), 
(iii) MLR with factor analysis as the data pre-pro-
cessing step for variable selection (FA-MLR), and 
(iv) principal component regression (PCR). 

2. Material and methods
2.1. Equipment
 Two-dimensional (2D) structures of mol-
ecules were drawn using Hyperchem 7.0 software. 
The optimized geometries were obtained with 
semi-empirical AM1 Hamiltonian in the Hyper-
chem program using the Polak-Ribiere algorithm 
until the root mean square gradient was 0.01 kcal.
mol-1. The resulted geometry was transferred into 
Dragon program package developed by Milano 
Chemometrics and QSAR Group (15). MATLAB 
software (version 7.1 Math Work Inc.) was used 
for model generation and validation of methods.

2.2. Data set and descriptor generation
 The biological data used in this study were 
the inhibitory activity (in terms of –logIC50) of a 
set of azole derivatives (16-31). These structures 
were then used for generating molecular descrip-
tors as independent variables. The large numbers 
of molecular descriptors were calculated using 
Hyperchem and Dragon package. Some chemi-
cal parameters including molecular volume (MV), 
molecular surface area (MSA), hydrophobicity 
(LogP), hydration energy (HE), and molecular po-
larizability (MP) were calculated using Hyper-
chem Software. Different constitutional, topologi-
cal, geometrical, and functional group descriptors 
were extracted with Dragon software for each 
molecule.

2.3. Data pre-processing 
 In order to test the developed model per-
formances, 30 % of the molecules (60 out of 200) 
were selected as the test set molecules. The Ken-
nard and Stones algorithm for splitting datasets 
into training and test subsets was exploited for 
this purpose. All the calculated descriptors were 
collected in a data matrix D with a dimension of 
(n×k), where n is the number of molecules and k 
is the number of descriptors, respectively. In each 
group, the calculated descriptors were searched 
for constant or near-constant values for all mol-
ecules, and those detected were removed from the 
original data matrix. The correlation of descrip-
tors with each other and with the activity data was 
determined. Then data matrix containing the total 
descriptors was subjected to principal component 
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analysis, and the first two principal components 
were plotted against each other (Figure 1A). The 
outlier data were assigned and deleted from the 
data set giving a total of 200 aromatase inhibitors. 

2.4. Data screening and model building
 The selected descriptors from each class 
and the experimental data were analyzed by the 
stepwise regression using SPSS software (version 
18.0). The calculated descriptors were collected 
in a data matrix whose number of rows and col-
umns were the number of molecules and descrip-
tors, respectively. MLR and GA-PLS, FA-MLR, 
and PCRA methods were used to derive the QSAR 
equations. The resulted models were validated by 
leave-one out cross-validation procedure (using 
MATLAB software) to check their predictability 
and robustness. However, this procedure did not 
produce good results, therefore, GA-PLS was used 
to select the best variables.
 Application of PLS allows the construc-
tion of larger QSAR equations, while still avoiding 
over-fitting and eliminating most variables. PLS is 
normally used in combination with cross-valida-
tion to obtain the optimum number of components 
(32-34). The PLS regression method used in this 
study was the NIPALS-based algorithm existed 
in the chemometrics toolbox of MATLAB soft-
ware (version 7.1 Math work Inc.). Leave-one-out 
cross-validation procedure was used to obtain the 
optimum number of factors based on the Haaland 
and Thomas F-ratio criterion (35). FA-MLR was 
also performed on the dataset. Factor analysis (FA) 
was used to reduce the number of variables and to 
detect structure in the relationships between them. 
This data-processing step is applied to identify the 
important predictor variables and to avoid collin-
earities among them (36). PCRA was also tried for 
the dataset along with FA-MLR. With PCRA, col-
linearities among X variables are not a disturbing 
factor and the number of variables included in the 
analysis may exceed the number of observations 
(37). In this method, factor scores, as obtained 
from FA, are used as the predictor variables (36). 
In PCRA, all descriptors are assumed to be impor-
tant while the aim of factor analysis is to identify 
relevant descriptors.

2.5. Variable importance in the projection (VIP)
 In order to investigate the relative impor-
tance of the variable appeared in the final model 
obtained by GA-PLS method, VIP was employed 
(38). VIP values reflect the importance of terms 
in the PLS model. According to Erikson et al. 
X-variables (predictor variables) could be classi-
fied according to their relevance in explaining y 
(predicted variable), so that VIP>1.0 and VIP<0.8 
mean highly or less influential, respectively, and 
0.8<VIP<1.0 means moderately influential (38).

3. Results and Discussion
3.1. MLR analysis
 In the first step, separate stepwise selec-
tion-based MLR analyses were performed using 
different types of descriptors. Then, an MLR equa-
tion was obtained utilizing the pool of all calcu-
lated descriptors. The results are summarized in 
Table 1.
 Correlation coefficient (R2) matrix for the 
descriptors used in different MLR equations is 
shown in Table 2.
 Collinear descriptors degrade the perfor-
mance of MLR equations, and such models have 
lowered the prediction ability. As shown in Table 
1, the QSAR models obtained for different deriva-
tives using different sets of molecular descriptors 
are listed. Table 1 provides the resulted equations 
for the studied compounds. The first equation of 
Table 1 was found by using chemical descriptors 
(E1). This equation explained the negative effect of 
hydration energy and partition coefficient of mol-
ecules on the aromatase inhibitory activity. Equa-
tion E2 shows that among constitutional descrip-
tors, mean atomic Vander Waals volume (MV) and 
number of nitrogen atoms (nN) have a positive 
effect on aromatase inhibitory activity. Number 
of chlorine atoms (nCl) has a negative effect on 
inhibitory activity. When the number of chlorine 
decreases, the partition coefficient also decreases; 
thus, the inhibitory activity increases. The presence 
of 9-membered rings (NR09) decreased inhibitory 
activity. Equation E3 of Table 1 demonstrates the 
effect of topological descriptors. It includes the 
negative effects of sum of topological distances 
between O..O (T(O..O)), Randic-type eigenvector-
based index from adjacency matrix (VRA1) and 
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Kier symmetry index (S0K) and the positive ef-
fect of structural information content (SIC3), sum 
of topological distances between N..N (T(N..N)), 
ratio of multiple path count to path counts (PCR), 
mean information index on atomic composition 
(ACC), and mean information content on the dis-
tance degree equality (IDDE) on aromatase inhibi-
tory activity. The MLR equation obtained from the 
pool of geometrical descriptors (E4) explained the 
positive effect of sum of geometrical distances be-
tween N..N (G(N..N)), length-to-breadth ratio by 
WHIM (L/BW), and sum of geometrical distances 
between N..O(G(N..O)) and the negative effect 
of 3D-Balaban index (J3O), sum of geometrical 
distances between O..O (G(O..O)), and span R 
(SPAN) of aromatase inhibitory activity. The effect 
of functional groups on aromatase inhibitory activ-
ity of the studied compounds has been described 
by equation E5 in Table 1. The negative signs of 
NCS, NCRHR, n=CHR, and NRORPH indicate 
that molecules with lower number of thioketones, 
number of ring tertiary C(sp3), number of second-
ary C(sp2), and number of ethers (aromatic) bind 
more strongly to aromatase. On the other hand, 
the number of nitriles aliphatic (nCN), number of 
tertiary amines aliphatic (nNR2), number of phe-
nols (nOHPH), number of sulfurs (nRSR), and 
nN-NPh: number of N hydrazines (aromatic) rep-
resent direct effect on the inhibitory activity of the 
compounds.
 The equation obtained from the effect of 
charge parameter on aromatase inhibitory activity 
of the studied compounds has been described as 
E6 in Table 1. The negative coefficient of PCWTe 
indicates that partial charge weighted topological 
electronic charge is not favorable for binding af-
finity. Equation E7 in Table 1 demonstrates the ef-
fect of Mol-walk descriptors. This two-parametric 
equation does not have a high statistical quality, 
which suggests that the aromatase inhibitory ac-
tivity of the studied molecules is not highly de-
pendent on the type of Mol-walk group; but it is 
dependent on the self-returning walk count of or-
der 05 (SRW05), molecular walk count of order 
08 (MWC08). The BCUT equation (E8) shows 
the importance of BCUT factors on aromatase in-
hibitory activity. Equations E9 and E10 in Table 1 
demonstrate the effect of Galves and 2D descrip-

tors. These four-parametric equations do not have 
a high statistical quality, which suggests that the 
aromatase inhibitory activity of the studied mol-
ecules is not highly dependent on the type of 
Galves and 2D descriptors. The effects of RDF and 
3D groups on aromatase inhibitory activity of the 
studied compounds have been described by equa-
tions E11 and E12 in Table 1. Equation E13 in Table 
1 demonstrates the effect of WHIM descriptors. 
This tree-parametric equation does not have a high 
statistical quality, which suggests that the aroma-
tase inhibitory activity of the studied molecules is 
not highly dependent on WHIM descriptors. E14 
explained the positive and negative effects of Get-
away descriptors on inhibitory activity. The MLR 
equation obtained from Atom-center descriptors 
(E15) has a high statistical quality explained the 
positive and negative effects of these descriptors. 
This equation describes the structure-activity rela-
tionships better than those obtained from the equa-
tions E1- E14.
 The last Equation (E16) was obtained 
from a collection of all descriptors. Stepwise se-
lection and elimination of variables produced a 
thirteen-parametric QSAR equation. This equation 
shows that constitutional (MV, nN, nCl), func-
tional (nNR2, nOHPH, nCrHR), BCUT (BELV1), 
topological (IDDE, VRA1), 2D (MATS4e), geo-
metrical (SPAN), RDF020V (RDF), and Getaway 
(R3p+), SED (SNQ8) parameters are major factors 
affecting the aromatase inhibitory activity of the 
compounds. Among these descriptors, MV, nN, 
nNR2, nOHPH, IDDE, and R3p+ have positive 
effects, while the other descriptors have negative 
effects on the aromatase inhibitory activity.

3.2. GA-PLS analysis
 The values of experimental pIC50 were 
3.6-9.8 and the predicted IC50 were 4-9 for MLR 
and FA-MLR methods and 3-9 for GA-PLS and 
PCR methods. The predicted IC50 were close to 
the experimental IC50. In PLS analysis, the de-
scriptors data matrix is decomposed to orthogonal 
matrices with an inner relationship between the 
dependent and independent variables. Therefore, 
unlike MLR analysis, the multicolinearity prob-
lem in the descriptors is omitted by PLS analysis. 
Because a minimal number of latent variables are 
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Table 1. The results of MLR analysis with different types of descriptors.
No. Descriptor 

Source
MLR Equations N R2 SE Q2 F

E1 Chemical Y=5.706(±0.267)−0.118(±0.018)HE−0.132(±0.052)
LOGP

140 0.31 0.27 0.28 30.67

E2 Constitutional Y=−11.686(±2.421)+24.864(±3.740)
MV+0.486(±0.088)NN−0.490(±0.179)

NCL+0.485(±0.198)NR09

140 0.52 0.31 0.48 36.9

E3 Topological Y=−3.577(±1.066)+3.418(±1.643)SIC3+0.033(±0.005)
T(N..N)+0.057(±0.012)PCR−0.018(±0.007)
T(O..O)+2.846(±0.770)AAC−0.002(±0.001)

VRA1+1.148(±0.341)IDDE−0.026(±0.012)S0K

140 0.65 0.29 0.56 28.43

E4 Geometrical Y=12.426(±1.010)+0.032(±0.006)
G(N..N)−2.222(±0.345)J3D−0.039(±0.010)

G(O..O)+0.181(±0.046)L ̸BW−0.332(±0.117)
SPAN+0.011(±0.005)G(N..O)

140 0.56 0.45 0.34 28.31

E5 Functional Y=6.139(±0.169)−0.336(±0.074)NCS+0.892(±0.165)
NCN+0.852(±0.124)NNR2+0.850(±0.264)

NOHPH−0.315(±0.148)NCRHR+1.100(±0.403)
NRSR+0.836(±0.246)nN ̵NPh−0.660(±0.252)

n=CHR−0.361(±0.148)NNRORPH

140 0.66 0.41 0.54 27.91

E6 Charge Y=8.818(±0.446)−0.106(±0.020)PCWTE 140 0.17 0.47 0.15 29.0
E7 Mol-walk Y=4.440(±0.487)+0.069(±0.028)

SRW05+2.087(±0.836)MWC08
140 0.13 0.51 0.11 9.87

E8 BCUT Y=−14.732(±9.786)−34.236(±3.595)
BELM1+22.804(±4.381)BELV1+14.516(±2.662)
BEHE2−4.548(±1.126)BEHM7+0.223(±0.104)

BEHM1

140 0.5 0.34 0.44 26.8

E9 Galves Y=3.434(±0.561)+7.623(±1.989)JGT−12.543(±2.042)
GGI10+4.555(±1.380)GGI7−2.437(1.023)GGI6

140 0.33 0.17 0.27 16.63

E10 2D Y=−8.911(±2.627)+12.938(±2.867)
ATS3V−5.970(±1.003)MATS4E+29.101(±6.171)

ATS3E−20.449(±5.134)ATS7E

140 0.5 0.22 0.44 33.62

E11 RDF Y=6.071(±0.528)−0.113(±0.017)RD-
F070U+0.183(±0.037)RDF030M−1.781(±0.419)

RDF020V

140 0.58 0.33 0.37 20.1

E12 3D Y=4.989(±0.717)+0.146(±0.053)MO-
R03U−0.401(±0.153)MOR09U−2.514(±0.606)

MOR26V+1.462(±0.415)MOR27U+0.633(±0.269)
MOR18U+0.811(±0.181)MOR07V−0.003(±0.001)

MOR01U−0.282(±0.124)MOR05U

140 0.64 0.3 0.56 28.83

E13 WHIM Y=8.493(±4.450)−115.654(±26.067)
G2S+99.551(±27.275)G1P+9.618(±3.572)DV

140 0.17 0.38 0.14 8.99

E14 Getaway Y=−2.161(±2.188)+19.076(±8.382)
R5v++7.339(±1.002)H1e−2.087(±0.419)
H3e−1.276(±0.369)H2e−9.360(±2.224)

R6m++15.791(±3.636)R3p+−8.084(±2.239)
R1e+−12.778(±4.468)R3u++6.237(±2.232)

R4e++0.014(±0.007)ITH

140 0.65 0.19 0.57 24.06

E15 Atom-center Y=7.530(±0.420)−1.860(±0.173)C ̵003+0.895(±0.137)
N ̵072+0.486(±0.098)C ̵034−0.059(±0.027)
H ̵047+0.609(±0.165)C ̵040−0.402(±0.159)

C ̵042+1.270(±0.386)S ̵107−0.737(±0.313)C 
̵004+0.652(±0.288)C ̵039

140 0.71 0.31 0.63 36.36

E16 All molecular 
descriptor

Y=3.414(±4.378)+9.959(±4.374)MV+0.409(±0.087)
NN+0.640(±0.105)NNR2+0.648(±0.218)

NOHPH−0.469(±0.136)NCL−5.576(±2.259)
BELV1+0.638(±0.210)IDDE−2.489(±0.796)

MATS4E−0.004(±0.001)VRA1+0.650(±0.134)
SPAN−1.075(±0.285)RDF020V+9.371(±3.563)

R3p+−0.388(±0.151)NCRHR

140 0.76 0.39 0.71 30.57
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Table 2. Correlation coefficient (R2) matrix for the descriptors of azole derivatives used in the MLR 
equation.
Descriptors MV NN NNR2 NOHPH NCL BELV1 IDDE MATS4E VRA1 SPAN RDF020V R3p+ NCRHR

MV 1 .418 .302 .182 .298 -.104 .361 -.064 -.068 -.195 -.444 .574 -.231
NN 1 -.180 .478 .160 -.321 .185 -.158 -.093 .107 -.118 .140 -.237

NNR2 1 -.173 .003 -.068 .261 -.043 .078 -.299 -.248 .279 .003
NOHPH 1 .077 .021 .128 -.042 -.143 .088 .009 .055 .273

NCL 1 -.184 .159 .131 -.069 -.016 -.110 .171 -.109
BELV1 1 -.080 .080 .207 .171 .148 -.240 .362
IDDE 1 .257 .235 .284 -.056 .117 -.090

MATS4E 1 .279 .275 .033 -.209 .172
VRA1 1 .571 .063 -.201 -.059
SPAN 1 .325 -.409 -.194

RDF020V 1 -.067 .148
R3p+ 1 -.143

NCRHR 1

used for modeling in PLS; this modeling method 
coincides with noisy data better than MLR. In or-

der to find the more convenient set of descriptors 
in PLS modeling, genetic algorithm was used as a 

Figure 1. A) PLS regression coefficients for the variables used in GA-PLS model. B) Variable importance in the  
projection (VIP) for the variables used in GA-PLS model.
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feature selection method. To do so, many differ-
ent GA-PLS runs were conducted using different 
initial sets of population. The data set (n=200) was 
divided into two group: calibration set (n=140) 
and prediction set (n=60). Given 140 calibration 
samples, the leave-one out cross-validation pro-
cedure was used to find the optimum number of 
latent variables for each PLS model. The most 
convenient GA-PLS model that resulted in the 
best fitness contained 26 indices, six of which 
were those obtained by MLR. The PLS estimate 
of coefficients for these descriptors are given in 
Figure 1B. As observed, a combination of chemi-
cal, topological, geometrical, functional, BCUT, 
2D, 3D, RDF, WHIM, and GETAWAY descriptors 
have been selected by GA-PLS to account the aro-
matase inhibitory activity of azole derivatives. The 
resulted GA-PLS model possessed a high statisti-
cal quality R2=0.86 and Q2=0.83. The predictive 
ability of the model was measured by applying 
this model to 60 external test set molecules. The 
squared correlation coefficient for prediction was 
0.87, and the standard error of prediction was 0.19.

 To measure the significance of the 25 
selected PLS descriptors in the aromatase inhibi-
tory activity; variable importance in the projection 
(VIP) was calculated for each descriptor (39). The 
VIP analysis of PLS equation is shown in Figure 2. 
VIP shows that IDDE, NNR2, MOR07, VBEHM7, 
RDF010E, H1E, and C-003 are the most impor-
tant indices in the QSAR equation derived by PLS 
analysis. In addition, J3O, BELM1, and BELV1 
have been found to be the moderately influential 
parameters.

3.3. FA-MLR and PCRA
 Table 3 shows the seven factor loadings 
of the variables (after VARIMAX rotation) for 
the compounds. Moreover, statistical parameters 
for testing the prediction ability of the MLR,  
GA-PLS, PCR, FA-MLR models are provided in 
Table 4.
 As can be seen in Table 3, about 70% of 
variances in the original data matrix could be ex-
plained by selected seven factors. Based on the 
procedure explained in the experimental section, 

Figure 2. Plots of the cross-validated predicted activity against the experimental activity for the QSAR 
models obtained by different chemometrics methods
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the following eight-parametric equation was de-
rived:

Y=16.343(±4.430)−0.811(±0.232)C 
̵003−0.094(±0.015)HE−2.495(±0.778)MATS4E−4.172 
(±2.118)BELM1+0.486(±0.133)NNR2+0.113(±0.036)
L/BW+0.612(±0.231)IDDE− 1.955(±0.817)BEHM
R2=0.77   S.E.=0.47 F=36.10   Q2 =0.73   RMScv=0.34   
N=140                                                               (Eq. 1)
 Equation 1 could explain 77% of the 
variance and predict 73% of the variance in (–
logIC50) data. This equation describes the effect 
of atom-center (C-003), chemical (HE), 2D (MA-
TS4E), geometrical (L/BW), BCUT (BELM1and 

BEHM7), functional (NNR2), and topological 
(IDDE) factors on inhibitory activity.
 When factor scores were used as the pre-
dictor parameters in a multiple regression equation 
using forward selection method (PCRA), the fol-
lowing equation was obtained:

Y=6.472(±0.061)+0.688(±0.058) F3−0.573 (±0.060) 
F1−0.343 (±0.060) F4−0.313 (±0.058) F6−0.330 
(±0.063) F5
R2=0.79    SE=0.25    F=30.1   Q2=0.73   RMScv=0.20   
N=140                                                            (Eq. 2)
 Equation 2 also shows high equation sta-
tistics (79% explained variance and 73% predict 

Table 3. Numerical values of factor loading numbers 1-7 for some descriptors after VARIMAX rotation.

Descriptors Component Extraction
F1 F2 F3 F4 F5 F6 F7

HE .862 .046 .027 .099 .250 .038 .014 .820
IDDE -.050 .003 .676 -.166 -.120 .193 -.152 .561
SIC3 -.398 -.395 .532 -.317 .214 .070 .142 .769

VRA1 .093 .287 .029 .082 -.016 .467 .556 .625
J3D .149 .085 -.018 -.049 .112 .064 -.741 .598

LBW .043 .018 .049 -.033 -.872 .077 -.036 .774
GO..O -.328 -.207 -.010 .038 .235 .569 .301 .621
NNR2 .213 -.034 .701 -.098 .321 -.142 .323 .776

BEHM7 -.036 .258 .243 .296 -.183 .666 -.021 .692
BELM1 .336 .194 -.318 .813 -.002 -.017 -.135 .931
BELV1 .046 -.079 -.058 .919 .032 .108 .043 .870

MATS4E .250 -.134 .149 -.044 .020 .715 -.095 .625
RDF010M .001 .766 -.288 .320 -.081 -.024 -.175 .810
RDF125M -.112 .098 .009 -.013 -.696 -.091 .205 .558
RDF010E .269 .738 -.291 .334 -.010 .047 -.146 .837
MOR18U -.236 -.274 .078 -.625 -.024 -.093 -.330 .645
MOR26U .539 -.133 -.354 -.208 .253 .198 -.026 .581
MOR07V -.118 .827 .266 -.099 -.011 -.004 .140 .797

G2S .233 .370 -.225 -.044 -.012 -.169 .191 .308
H1E -.838 .063 .064 -.201 .188 -.035 .097 .797
R3u+ .415 -.577 -.193 -.047 .250 -.311 -.022 .705
R4u+ .190 -.482 .158 .022 .455 -.481 .066 .737
R6m+ -.187 -.430 .304 .069 -.401 .086 -.127 .502
R1e+ -.639 -.322 -.004 -.252 .325 -.032 .259 .749
C-003 .236 .125 -.819 .091 .205 -.207 .001 .836
C-042 -.654 -.006 .143 -.283 -.302 .128 -.100 .646

%Variance 13.87 12.875 10.355 10.047 9.037 7.95 5.749 69.883
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variance in (–logIC50) data). Since factor scores 
are used instead of the selected descriptors, and 
any factor-score contains information from differ-
ent descriptors, loss of information is thus avoided 
and the quality of PCRA equation is better than 
those derived from FA-MLR.
 As observed in Table 3, for each factor, 
the loading values for some descriptors are much 
higher than those of the others. These high values 
for some factors indicate that these factors contain 
higher information about the related descriptor. 
It should be noted that all factors have informa-
tion from all descriptors, but the contribution of 
descriptor in different factors are not equal. For 
example, factors 1 and 2 have higher loadings for 
chemical, GETAWAY, WHIM, atom-center, RDF, 
and 3D indices, whereas information about func-
tional, atom-center, topological, BCUT, and 3D 
are highly incorporated in factors 3 and 4. Factors 
5 and 6 have higher loadings for geometrical, RDF, 

BCUT, and 2D descriptors and geometrical indices 
are highly correlated for factor 7. Therefore, the 
significance of the original variables for modeling 
the activity can be obtained using the factor scores 
used by equation E2.
 A comparison between the results ob-
tained by GA-PLS and the other employed regres-
sion methods indicates the higher accuracy of this 
method in describing inhibitory activity of the 
studied compounds (Table 4). Difference in ac-
curacy of the different regression methods used in 
this study is visualized in Figure 3 by plotting the 
predicted activity (by cross-validation) against the 
experimental values. Obviously, all linear models 
represented scattering of the data around a straight 
line with slope and intercept close to one and zero, 
respectively. As it is observed, the plot of data re-
sulted by GA-PLS represents the lowest scattering 
and those obtained by MLR, FA-MLR, and PCR 
analysis have lower accuracy. 

Table 4. Statistical parameters for testing prediction ability of the MLR, GA-PLS, PCR, FA-MLR models.

Model R2 R2LOOCV RMSEcv R2p RMSEp
MLR 0.76 0.71 0.29 0.78 0.15

GA-PLS 0.86 0.83 0.24 0.87 0.19
PCR 0.79 0.73 0.14 0.81 0.21

FA-MLR 0.77 0.73 0.32 0.78 0.15
R2: Regression Coefficient for Calibration set

R2LOOCV: Regression Coefficient for Leave One Out Cross Validation

RMSEcv: Root Mean Square Error of cross validation

R2p: Regression Coefficient for prediction set

RMSEp: Root Mean Square Error of prediction set.

Table 5. Leverage (h) of the external test set molecules for different models. The last row (h*) is the warning lever-
age.

Compound MLR GA-PLS PCR FA-MLR

2 0.14288 0.16818 0.01900 0.05935
3 0.15846 0.18979 0.01336 0.06081
6 0.14079 0.44248 0.02050 0.10788
8 0.05242 0.14633 0.02284 0.02292
11 0.04457 0.18829 0.01956 0.02504
12 0.04496 0.18252 0.03548 0.02472
15 0.08365 0.11893 0.01119 0.05457
17 0.05662 0.24540 0.04260 0.04843
23 0.06222 0.10563 0.03367 0.05171
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Continued Table 5.
24 0.05444 0.08380 0.03471 0.04782
30 0.08242 0.12324 0.02880 0.06385
33 0.09269 0.13906 0.02990 0.06190
36 0.15986 0.14455 0.01827 0.02760
38 0.14282 0.17320 0.02872 0.03686
42 0.08951 0.31819 0.02959 0.07830
49 0.08275 0.13842 0.03434 0.05758
55 0.07152 0.23245 0.01505 0.05855
60 0.07627 0.16194 0.03667 0.05823
62 0.08087 0.11927 0.01121 0.04788
64 0.06017 0.12505 0.01246 0.05382
68 0.08534 0.13683 0.02565 0.05306
75 0.04619 0.22383 0.01451 0.05328
78 0.04814 0.11056 0.01386 0.04680
79 0.07264 0.14557 0.01775 0.04778
80 0.07120 0.14603 0.01072 0.06557
86 0.06729 0.25212 0.02520 0.05582
88 0.08297 0.18762 0.01224 0.06388
90 0.03553 0.11136 0.01334 0.04988
93 0.03517 0.12404 0.00693 0.05060
94 0.06407 0.07648 0.01151 0.05180
100 0.07189 0.21451 0.01538 0.07079
101 0.08671 0.28550 0.03191 0.06863
106 0.02817 0.11374 0.01337 0.02205
107 0.04614 0.14807 0.00290 0.04854
120 0.03101 0.25959 0.03490 0.09864
122 0.05894 0.15148 0.04893 0.07139
123 0.03172 0.19658 0.03765 0.07707
124 0.02772 0.15548 0.01346 0.05116
126 0.03118 0.18710 0.02195 0.08277
127 0.04175 0.23179 0.01327 0.05130
129 0.15895 0.20530 0.05681 0.10465
136 0.09792 0.17117 0.06216 0.08211
138 0.06488 0.24813 0.04207 0.10430
139 0.04863 0.17015 0.03389 0.07303
141 0.07266 0.14159 0.03156 0.03451
143 0.05513 0.13488 0.03617 0.05047
147 0.15681 0.29189 0.01387 0.06859
150 0.08071 0.09786 0.03842 0.05394
151 0.11455 0.11796 0.07559 0.07918
152 0.11423 0.39927 0.03597 0.09087
160 0.08094 0.09714 0.03402 0.05666
164 0.10503 0.17022 0.03800 0.09241
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3.4. Applicability domain of the models 
 The calculated leverage values of the test 
set samples for different MLR, GA-PLS, PCR, and 
FA-MLR models are listed in Table 5. The warn-
ing leverage, as the threshold value for the accept-
ed prediction, is also given in Table 5.
 It is important to emphasize that no mat-
ter how valid and significant a QSAR may be, it 
cannot be expected to reliably predict the modeled 
property for the entire space of chemicals. There-
fore, before a QSAR is put into use for screening 
chemicals, its domain of application must be de-
fined, and predictions for only those chemicals that 
fall within this domain may be considered reliable. 
Leverage (32) is one of standard methods for this 
aim. The numerical value of leverage has certain 
characteristic: (a) the value is always greater than 
zero, (b) the lower the value; the higher is the con-
fidence in the prediction. A value of 1 indicates a 
very poor prediction. A value of 0 indicates perfect 

prediction and will not be achieved. Another factor 
for analysis of the results is warning leverage (h*). 
The warning leverage is, generally, fixed at 3k/n, 
where n is the number of training compounds, and 
k is the number of final model parameters. A lever-
age greater than warning leverage h* means that 
the predicted response is the result of substantial 
extrapolation of the model and therefore may not 
be reliable. As can be seen in Table 5, the lever-
ages of all test samples are lower than h* for all 
models. This means that all predicted values are 
acceptable.

3.5. Y-randomization test
 The results of this part of study including 
the R2 and R2LOOCV values after several Y-ran-
domization tests are presented in Table 6.
 The robustness of the obtained QSAR 
models was confirmed by Y-randomization test 
(40). In this technique, the dependent variable 
vector is randomly displaced ten times and new 

Continued Table 5.
168 0.06442 0.35440 0.05685 0.07659
173 0.04802 0.23025 0.02384 0.05663
176 0.07474 0.18685 0.05295 0.01904
177 0.08959 0.24565 0.05915 0.03364
178 0.08159 0.25553 0.06755 0.03956
179 0.07051 0.13105 0.07381 0.03773
193 0.04646 0.14804 0.01009 0.05729
195 0.06454 0.36498 0.01090 0.10982
h* 0.27857 0.55714 0.10714 0.17143

Table 6. R2 and R2LOOCV values after several Y-randomization on all models.

Iteration FA-MLR PCR GA-PLS MLR
R2 R2LOOCV R2 R2LOOCV R2 R2LOOCV R2 R2LOOCV

1 0.07 0.05 0.09 0.00 0.04 0.01 0.12 0.01
2 0.05 0.01 0.22 0.19 0.05 0.01 0.26 0.14
3 0.12 0.06 0.03 0.01 0.03 0.01 0.23 0.09
4 0.07 0.02 0.26 0.11 0.27 0.15 0.08 0.03
5 0.04 0.02 0.05 0.01 0.11 0.06 0.14 0.08
6 0.06 0.01 0.13 0.04 0.05 0.02 0.09 0.04
7 0.09 0.02 0.16 0.08 0.12 0.07 0.11 0.08
8 0.03 0.01 0.14 0.06 0.07 0.03 0.06 0.03
9 0.06 0.04 0.11 0.09 0.02 0.00 0.05 0.01
10 0.13 0.09 0.13 0.07 0.15 0.07 0.03 0.00

215



Trends in Pharmaceutical Sciences 2018: 4(4): 205-218.

Razeih Sabet et al.

5. References
1. Ortiz AR, Pastor M, Palomer A, Cruciani 
G, Gago F, Wade RC. Reliability of comparative 
molecular field analysis models: effects of data 
scaling and variable selection using a set of human 
synovial fluid phospholipase A2 inhibitors. J Med 
Chem. 1997;40:1136-48.
2. Ortiz AR, Pisabarro MT, Gago F, Wade 
RC. Prediction of drug binding affinities by com-
parative binding energy analysis. J Med Chem. 
1995;38:2681-91.
3. Bennion C, Connolly S, Gensmantel NP, 
Hallam C, Jackson CG, Primrose WU, Roberts 
GC, Robinson DH, Slaich PK. Primrose, et al.  
Design and synthesis of some substrate analog in-
hibitors of phospholipase A2 and investigations by 
NMR and molecular modeling into the binding in-
teractions in the enzyme-inhibitor complex. J Med 
Chem. 1992;35:2939-51.
4. Ortiz AR, Pisabarro MT, Gallego J, Gago 
F. Implications of a consensus recognition site for 
phosphatidylcholine separate from the active site 
in cobra venom phospholipases A2. Biochemistry. 
1992;31:2887-96
5. Sessions RB, Dauber‐Osguuthorpe P, 
Campbell MM, Osguthorpe DJ.  Modeling of sub-
strate and inhibitor binding to phospholipase A2.  
Proteins. 1992;14:45-64. 
6. Noel JP, Bingman CA, Deng TL, Dupu-
reur CM, Hamilton KJ, Jiang RT, et al. Phospho-
lipase A2 engineering. X-ray structural and func-
tional evidence for the interaction of lysine-56 
with substrates. Biochemistry. 1991;30:11801-11.
7. Chumsri S, Howes T, Bao T, Sabnis 
G, Brodie A. Aromatase, aromatase inhibitors, 
and breast cancer. J Steroid Biochem Mol Biol. 

2011;125:13-22. 
8. Hong Y, Chen S. Aromatase inhibitors: 
structural features and biochemical characteriza-
tion. Ann N Y Acad Sci. 2006;1089:237-51.
9. Séralini G, Moslemi S. Aromatase inhibi-
tors: past, present and future. Mol Cell Endocrinol. 
2001;178:117-31.
10. Foye WO, Lemke TL, Williams DA. 
Foye’s principles of medicinal chemistry. Lippin-
cott Williams & Wilkins. 2008;1334-1400.
11. Miller WR1, Bartlett J, Brodie AM, 
Brueggemeier RW, di Salle E, Lønning PE, et al. 
Aromatase inhibitors: are there differences be-
tween steroidal and nonsteroidal aromatase inhibi-
tors and do they matter? Oncologist. 2008;13:829-
37. 
12. Narashimamurthy J1, Rao AR, Sastry GN. 
Aromatase inhibitors: a new paradigm in breast 
cancer treatment. Curr Med Chem Anticancer 
Agents. 2004;4:523-34.
13. Beale JM, Block J, Hill R. Organic me-
dicinal and pharmaceutical chemistry. Lippincott 
Williams & Wilkins Philadelphia 2010;156-200.
14. Deeb O, Clare BW. QSAR of aromatic 
substances: protein tyrosine kinase inhibitory ac-
tivity of flavonoid analogues. Chem Biol Drug 
Des. 2007;70:437-49.
15. Todeschini R. Milano chemometrics and 
QSPR Group. 2008.
16. Castellano S, Stefancich G, Ragno R, 
Schewe K, Santoriello M, Caroli A, et al. CYP19 
(aromatase): exploring the scaffold flexibility for 
novel selective inhibitors. Bioorg Med Chem. 
2008;16:8349-58.
17. Wang R, Shi HF, Zhao JF, He YP, Zhang 
HB, Liu JP. Design, synthesis and aromatase in-

.................................................................................................................................

QSAR models are developed using the original in-
dependent variable matrix. Lower R2 and R2CV-
LOO values for the new QSAR models insure the 
robustness of the obtained QSAR models for the 
specific modeling method and data (Table 6).

4. Conclusion
 Quantitative relationships between molec-
ular structure and the inhibitory activity of a series 
of azole derivative were discovered by a collection 
of chemometrics methods including MLR, GA-
PLS, FA-MLR, and PCRA. In this series, a sig-
nificant role of topological, functional, 3D, atom-

center, and getaway parameters on the inhibitory 
activity was observed. A comparison between the 
different employed statistical methods indicated 
that GA-PLS represented superior results, and it 
could explain and predict 86% and 83% of vari-
ances in the –log IC50 data. As observed, the plot 
of data resulted by GA-PLS represents the lowest 
scattering, and the impact of topological and func-
tional descriptors were the most.

Conflict of Interest
 None declared.

216



Trends in Pharmaceutical Sciences 2018: 4(4): 205-218.

QSAR analysis of azole aromatase inhibitors

hibitory activities of novel indole-imidazole  
derivatives. Bioorganic Med Chem Lett. 
2013;23:1760-2.
18. Woo LW1, Sutcliffe OB, Bubert C, Grasso 
A, Chander SK, Purohit A, et al. First dual aro-
matase-steroid sulfatase inhibitors. J Med Chem. 
2003;46:3193-6.
19. Gobbi S, Cavalli A, Negri M, Schewe KE, 
Belluti F, Piazzi L, et al. Imidazolylmethylbenzo-
phenones as highly potent aromatase inhibitors. J 
Med Chem. 2007;50:3420-2.
20. Yahiaoui S, Pouget C, Buxeraud J, Chulia 
AJ, Fagnère C. Lead optimization of 4-imidazolyl-
flavans: New promising aromatase inhibitors.  Eur 
J Med Chem. 2011;46:2541-5.
21. Sonnet P, Dallemagne P, Guillon J, Engue-
hard C, Stiebing S, Tanguy J, et al. New aroma-
tase inhibitors. Synthesis and biological activity of 
aryl-substituted pyrrolizine and indolizine deriva-
tives. Bioorg Med Chem. 2000;8:945-55.
22. Gobbi S, Zimmer C, Belluti F, Rampa A, 
Hartmann RW, Recanatini M, et al. Novel highly 
potent and selective nonsteroidal aromatase inhib-
itors: synthesis, biological evaluation and struc-
ture-activity relationships investigation. J Med 
Chem. 2010;53:5347-51
23. Nagar S, Islam MA, Das S, Mukherjee 
A, Saha A. Pharmacophore mapping of flavone 
derivatives for aromatase inhibition. Mol Divers. 
2008;12:65-76. 
24. Saberi MR, Vinh TK, Yee SW, Griffiths BJ, 
Evans PJ, Simons C. Potent CYP19 (aromatase) 
1-[(benzofuran-2-yl)(phenylmethyl) pyridine,-im-
idazole, and-triazole inhibitors: synthesis and bio-
logical evaluation. J Med Chem. 2006;49:1016-22.
25. Pouget C, Yahiaoui S, Fagnere C, Habri-
oux G, Chulia AJ. Synthesis and biological evalua-
tion of 4-imidazolylflavans as nonsteroidal aroma-
tase inhibitors. Bioorg Chem. 2004;32:494-503.
26. Lézé MP, Le Borgne M, Pinson P, Palus-
czak A, Duflos M, Le Baut G, et al. Synthesis and 
biological evaluation of 5-[(aryl)(1H-imidazol-
1-yl) methyl]-1H-indoles: potent and selective 
aromatase inhibitors. Bioorg Med Chem Lett. 
2006;16:1134-7.
27. Hackett JC, Kim YW, Su B, Brueggemeier 
RW. Synthesis and characterization of azole isofla-
vone inhibitors of aromatase. Bioorg Med Chem. 
2005;13:4063-70. 
28. Yahiaoui S, Pouget C, Fagnere C,  

Champavier Y, Habrioux G, Chulia AJ. Synthe-
sis and evaluation of 4-triazolylflavans as new 
aromatase inhibitors. Bioorg Med Chem Lett. 
2004;14:5215-8. 
29. Lézé MP, Palusczak A, Hartmann RW, 
Le Borgne M. Synthesis of 6-or 4-functionalized 
indoles via a reductive cyclization approach and 
evaluation as aromatase inhibitors. Bioorg Med 
Chem Lett. 2008;18:4713-5. 
30. Karjalainen A, Kalapudas A, Södervall M, 
Pelkonen O, Lammintausta R. Synthesis of new 
potent and selective aromatase inhibitors based on 
long-chained diarylalkylimidazole and diarylal-
kyltriazole molecule skeletons. Eur J Pharm Sci. 
2000;11:109-31. 
31. Woo LW1, Bubert C, Sutcliffe OB, Smith 
A, Chander SK, Mahon MF, et al. Dual aroma-
tase-steroid sulfatase inhibitors. J Med Chem. 
2007;50:3540-60. 
32. Kennard KW, Stone LA. Computer 
Aided Design of Experiments. Technometrics. 
1969;11:137-48.
33. Bhattacharya P, Roy K. QSAR of adenos-
ine A3 receptor antagonist 1, 2, 4-triazolo [4, 3-a] 
quinoxalin-1-one derivatives using chemometric 
tools. Bioorg Med Chem Lett. 2005;15:3737-43.
34. Leardi R. Genetic algorithms in chemo-
metrics and chemistry: a review. J Chemometrics.  
2001;15:559-69.
35.  Hemmateenejad B. Optimal QSAR anal-
ysis of the carcinogenic activity of drugs by corre-
lation ranking and genetic algorithm-based PCR. J 
Chemometrics. 2004;18:475-85.
36. Franke R, Gruska A, Waterbeemd H. 
Chemometrics Methods in molecular design. 
Methods and Principles in Medicinal Chemistry 
1995;2:113-9.
37. H. Kubinyi, ‘The quantitative analysis of 
structure-activity relationships’. w Wolff, M.(red.), 
Burger’s Chemistry and Drug Discovery. John Wi-
ley & Sons Inc., New York 1995.
38. Olah M, Bologa C, Oprea TI. An auto-
mated PLS search for biologically relevant QSAR  
descriptors. J Comput Aided Mol Des.  
2004;18:437-49.
39. Brereton RG. Applied chemometrics for 
scientists. John Wiley & Sons. 2007.
40. Baumann K. Cross-validation as the ob-
jective function for variable-selection techniques.
Trends Analyt Chem. 2003;22:395-406.

217



Trends in Pharmaceutical Sciences 2018: 4(4): 205-218.

Razeih Sabet et al.

218


