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Abstract
 Multiple sclerosis (MS) is a neurodegenerative disease. Although multiple factors are involved in 
the pathogenesis of MS, there are several lines of evidence that oxidative stress and mitochondrial dysfunc-
tion are involved in neuronal demyelination and deterioration of MS symptoms. Hence, compounds that 
could modulate mitochondrial function and decrease mitochondria-mediated ROS formation might be able 
to decrease MS symptoms. Methylene blue (MB) is a compound widely used in the treatment of central 
nervous system disease (e.g., Alzheimer’s disease). It has been found that MB could robustly suppress 
mitochondria-mediated ROS formation at low concentrations. The current study was designed to evalu-
ate the effect of MB on neuronal demyelination, mitochondrial function, and ROS formation in an animal 
model of MS. C57BL/6 male mice received cuprizone (0.1% w: w in chow diet for 42 consecutive days). 
MB (0.5 and 1 mg/kg, oral) was simultaneously administered. Significant demyelination was detected in 
CPZ-treated animals, which confirm the induction of MS in the mice model. Decreased animals’ locomotor 
activity, including significant suppression of open field movement, stride length, and decreased time on the 
rotarod, was evident in CPZ-treated mice. Mitochondrial indices, including significantly elevated lipid per-
oxidation, mitochondrial depolarization, significant mitochondrial permeabilization, and decreased ATP 
levels, were also detected in the CPZ group. It was found that MB administration significantly improved 
animals’ locomotor activity and mitochondrial indices in the current animal model of MS. The effects of 
MB on mitochondria and mitochondria-mediated ROS formation might play a fundamental role in the 
protective effects of this compound. 

Keywords: ATP, Mitochondrial impairment, Neurodegeneration, Neurotoxicity, Oxidative stress..................................................................................................................................

...........................................................................................................................

Corresponding Author: Hossein Niknahad and Reza Heidari,  
Pharmaceutical Sciences Research Center and Department of Phar-
macology and Toxicology, School of Pharmacy, Shiraz University of 
Medical Sciences, Shiraz, Iran.
Email: niknahadh@sums.ac.ir; rheidari@sums.ac.ir

Recieved: 27/01/2020; Accepted: 01/03/2020

Original Article

1. Introduction
 Methylene blue (MB; 3, 7-Bis (dimethyl-
amino) phenothiazine-5-ium, Figure 1) is a phe-
nothiazine compound tested for the treatment of a 

variety of ailments in the past 100 years (1). The 
positive effects of MB on different experimental 
models of human diseases have been reported 
(2-9). It has been found that MB significantly al-
leviated inflammatory disorders, ischemia-reper-
fusion-induced organ injury, as well as xenobi-
otics-induced damage toward biological systems 
(9-14). On the other hand, the effects of MB on 
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central nervous system diseases are an interest-
ing feature of this compound (15-19). The effects 
of MB on the central nervous system (CNS) dis-
eases such as Alzheimer’s are the most impressive 
therapeutic properties of this compound (20-22). 
Interestingly, some formulations of MB even un-
derwent clinical trials (e.g., Rember™) in humans 
(1, 23, 24). MB is an FDA-approved drug for the 
treatment of methemoglobinemia with different 
etiologies (25).
 Multiple sclerosis (MS) is a debilitating 
disease characterized by neuron demyelination 
and several locomotor dysfunctions in patients 
(26, 27). Multiple neurological deficits have been 
associated with MS (27). The role of the immune 
response in the pathogenesis of MS has been well-
documented (26, 28). However, several other fac-
tors have also been identified in the pathobiology 
of MS disease (28, 29). Reactive oxygen species 
(ROS) and oxidative stress is a primary mecha-
nism involved in the progression of MS (30-32).
 Although there is no precise mechanism 
for the source of ROS in the brain of MS patients, 
the activity of inflammatory cells, the accumu-
lation of redox-active metals such as iron in the 
brain tissue, as well as mitochondrial impairment 
has been identified as a source of ROS in the brain 
of MS patients (33-35). Cellular mitochondria are 
the primary source of ROS formation (36, 37). 
Therefore, in the current study, the role of MB ad-
ministration on the brain mitochondrial function 
has been investigated. 
 Various investigations mentioned the ef-
fects of MB on mitochondrial function and regu-
lation of mitochondria-mediated reactive oxygen 
(ROS) formation (38). It has been found that MB 
significantly decreased mitochondria-mediated 
ROS formation (38). The effects of MB on cellu-
lar mitochondria is concentration-dependent (38). 
Low concentrations of MB decrease mitochondria 

ROS formation (38). Higher concentrations of 
this compound (>5 µM) deteriorate mitochondrial 
function and could cause cell death (38).
 The current investigation aimed to evalu-
ate the effects of MB supplementation on the lo-
comotor activity and mitochondrial function in an 
animal model of MS.

2. Material and methods
2.1. Reagents
 Methylene blue (3, 7-Bis (dimethylamino) 
phenothiazine-5-ium), trichloroacetic acid (TCA), 
thiobarbituric acid (TBA), sodium citrate, ethyl-
ene diamine tetra-acetic acid (EDTA), meta-phos-
phoric acid, methanol HPLC grade, 2 amino 2-hy-
droxymethyl-propane-1,3-diol-Hydrochloride 
(Tris-HCl), and all salts used for making buffer 
solutions were obtained from Merck (Darmstadt, 
Germany). Cuprizone (bis-cyclohexanone oxal-
dihydrazone) was purchased from Sigma (Sigma-
Aldrich, St. Louis, MO).

2.2. Animals
  C57BL6 male mice weighing 20-25 g 
were purchased from the Center of Compara-
tive and Experimental Medicine (Shiraz, Iran). 
The use of animals complied with the guidelines  
established by the Animal Care Committee of this 
institute (94-01-36-11043). Animals were housed 
in a standard environment (temperature of 23±1 
ºC and 45 ± 5% humidity). Animals had access to 
a rodents chow diet (RoyanFeed®, Isfahan, Iran), 
and tap water ad libitum.  

2.3. Animal model of multiple sclerosis
 Cuprizone (Oxalic bis (cyclohexylidene-
hydrazide; CPZ)-fed C57BL6 mice were used as 
an animal model of MS (n=8) (39). Mice were 
treated with a rodent chow diet containing 0.2% 
(w: w) CPZ ad libitum (39, 40). The control group 

Figure 1. Methylene blue (3, 7-Bis (dimethyl amino) phenothiazine-5-ium) chloride.
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consisted C57BL/6 mice (n=8) that were not fed 
CPZ (n=8). Two other groups were simultaneously 
treated with CPZ and MB (0.5 mg/kg and 1 mg/
kg, oral) for 42 consecutive days (n=8/group). At 
day 43, animals underwent a series of behavioral 
investigations. Afterward, animals were sacrificed 
(thiopental 80 mg/kg, i.p), and their brain was ex-
cised and used for further experiments.

2.4. Behavioral studies
2.4.1. Rotarod test
 Following a reported procedure, each rat 
underwent five sessions of rotarod performance on 
a ‘Techno’ (Lucknow, India) made a rotarod appa-
ratus. The speed of the rotarod was fixed with the 
increments of 5, 10, and 15 rpm. Each session had 
three trials for each rat with 10 min interval, and 
the time that rats stayed on the rotating rod was 
recorded automatically (41-43).

2.4.2. Gait stride
 Using a runway procedure, the rats, with 
their hind paws wetted with the ink, were allowed 
to walk down on a paper strip (60 cm long, 10 cm 
wide) from the brightly lit corridor toward a dark 
side. The distance between the prints of left and 
right paws was measured and recorded (41-44).

2.4.3. Open field test
 Open-field behavior is used as an index of 
animals’ locomotor activity in the animal models 
of hyperammonemia and hepatic encephalopathy 
(45, 46). The open-field test was conducted for 
each group five hours before animal anesthesia 
and blood and liver sample collection. The appa-
ratus was made of the white wood box (100 cm 
L × 100 cm W × 30 cm H, box floor was divided 
into 25 squares of 20×20 cm). The open-field are-
na was equipped with a webcam (2.0-Megapixel, 
Gigaware, UK), and all activities were monitored 
and recorded from a separate room. Animals’ be-
havior was recorded for fifteen minutes, and the 
total number of crossed squares were counted (To-
tal locomotion) (47, 48).

2.5. Histopathological evaluation of the brain  
tissue
 Brain tissue sections were preserved in a 

formalin buffer solution (0.4% sodium phosphate 
monobasic, 0.64% sodium phosphate dibasic, and 
10% formaldehyde in double-distilled water). 
Luxol fast blue (LFB) staining was applied to de-
tect neuronal demyelination in the corpus callo-
sum region of the brain of different experimental 
groups (49, 50).

2.6. Isolation of the liver mitochondria
 Mice liver mitochondria were isolated 
as previously described (51). Briefly, animals 
were anesthetized (ketamine/xylazine, 50/10 mg/
kg, i.p), and their liver was excised and washed 
with ice-cold saline (sodium chloride 0.9%) (51-
53). The organ was homogenized with an Ultra-
Turrax® Tube (IKA) homogenizer (8000 rpm, 
10 sec), in a buffer containing 220 mM mannitol, 
70 mM sucrose, 0.5 mM EGTA, 2 mM HEPES, 
0.1% mostly fatty acid-free bovine serum albumin 
(pH=7.4)  at a  10:1  buffer to liver (v/w)  ratio (51, 
54). Afterward, the liver homogenate was centri-
fuged at 1,000 g for 20 minutes at 4oC to remove 
intact cells and nuclei. The supernatants were fur-
ther centrifuged (15,000 g, 4 °C, 20 minutes) to 
precipitate the heavy membrane fractions (mito-
chondria) (55, 56). This step was repeated three 
times using a fresh buffer medium. As mentioned, 
all manipulations for liver mitochondria isolation 
were performed at 4 °C or on ice to minimize mi-
tochondrial injury (51).

2.7. Mitochondrial ATP levels
 Based on a previously reported protocol, 
mitochondrial ATP level was assessed by HPLC 
(57). Briefly, isolated mitochondria (1 mg protein/
mL) were treated with 100 µL ice-cooled phos-
phoric acid (50 % w: v, 4 ºC) and centrifuged (10 
min, 15,000 g, 4 ºC). Afterward, the supernatant 
(100 µL) was treated with its equivalent volume 
of ice-cooled 1 M KOH solution. Samples (25 µL) 
were injected into an HPLC system consisted of 
an LC-18 column (µ-Bondapak, 25 cm) (58). The 
mobile phase was composed of 100 mM  KH2PO4 
(pH = 7 adjusted with KOH), tetrabutylammonium 
hydroxide (1 mM), and acetonitrile (2.5 % v: v). 
The flow rate was 1 mL/min, and the UV detector 
was set at λ=254 nm (57, 58).
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2.8. Lipid peroxidation in isolated mitochondria  
 Thiobarbituric acid-reactive substances 
(TBARS) were measured in isolated kidney mito-
chondria (59, 60). Previous studies mentioned that 
sucrose interferes with the lipid peroxidation test 
in isolated mitochondria preparations (51). There-
fore, mitochondria preparations were washed once 
(to remove sucrose) in ice-cooled MOPS-KCl 
buffer (50 mM MOPS, 100 mM KCl, 4 ºC, pH = 
7.4). For this purpose, isolated kidney mitochon-
dria were suspended in 5 mL of MOPS-KCl buf-
fer and centrifuged (17,000 g, 15 min). The pellet 
was re-suspended in MOPS-KCl buffer and used 
for TBARs assay. The mitochondrial suspension 
(1 mg protein/mL) was mixed with 1 mL of a so-
lution containing trichloroacetic acid (15 % w: 
v), HCl (0.24 N), thiobarbituric acid (0.375 % w: 
v), and Trolox (500 µM) (61-63). Samples were 
heated for 15 min at 100 ºC (51). Then 1 mL of n-
butanol was added and vortexed (5 min). Samples 
were centrifuged (17,000 g, 10 min), and the ab-
sorbance of the upper phase (n-butanol phase) was 
measured (EPOCH plate reader, BioTek® Instru-
ments, Highland Park, USA, λ=532 nm) (51).

2.9. Mitochondrial depolarization
 Mitochondrial uptake of rhodamine 123 
was applied for the evaluation of mitochondrial de-
polarization (64-66). Rhodamine 123 accumulates 
in the mitochondrial matrix by facilitated diffusion. 
When the mitochondrion is depolarized, there is 
no facilitated diffusion. Therefore, the amount of 
rhodamine 123 in the supernatant will be increased 
(67-69). In the current study, the mitochondrial 
fractions (0.5 mg protein/mL; in the depolariza-
tion assay buffer) were incubated with rhodamine 
123 (10 µM, 30 min, 37 °C, in the dark) (70-73). 
Afterward, samples were centrifuged (17,000 g, 2 
min, 4 °C), and the fluorescence intensity of the 
supernatant was monitored (FLUOstar Omega®; 
BMG Labtech, Germany; λexcitation=485 nm and 
λemission=525 nm) (64, 74).

2.10. Mitochondrial permeabilization and swell-
ing 
 Mitochondrial swelling was estimated by 
analyzing the changes in optical density at λ=540 
nm (51, 75). Briefly, isolated mitochondria (0.5 

mg protein/ml) were suspended in swelling buffer 
(125 mM Sucrose, 65 mM KCl, 10 mM HEPES, 
pH=7.2) (76). The absorbance was monitored 
(λ=540 nm, 30°C, during 30 min) (77, 78), using 
an EPOCH plate reader (Bio-Tek® Instruments, 
Highland Park, USA). A decrease in absorbance is 
connected with an increase in mitochondrial swell-
ing. The results are reported as maximal mitochon-
drial swelling amplitude (ΔOD 540 nm) (51, 75).

2.11. Mitochondrial dehydrogenases activity
 The 3-(4, 5-dimethylthiazol-2-yl)-2, the 
5-diphenyltetrazolium bromide (MTT) assay was 
applied as a colorimetric method for the estima-
tion of mitochondrial dehydrogenases activity in 
isolated mice liver mitochondria (79-81). Mito-
chondrial suspension in a buffer containing 0.32 
M sucrose, 1 mM EDTA, and 10 mM Tris-HCl, 
pH 7.4, was incubated with 0.4% of MTT at 37 °C 
for 30 minutes. The product of purple formazan 
crystals was dissolved in 1 ml dimethyl sulfoxide 
(DMSO) (61, 82-84). Then, 100 µL of dissolved 
formazan was added to a 96-well plate, and the op-
tical density at λ=570 nm was measured with an 
EPOCH plate reader (BioTek® Instruments, High-
land Park, USA). Samples protein concentrations 
were determined by the Bradford method (61, 85).

2.12. Statistical methods
 Data are given as Mean±SD. The com-
parison of data sets was performed by the one-
way analysis of variance (ANOVA) with Tukey’s 
multiple comparisons as a post hoc test. Values of 
P<0.05 were considered statistically significant.

3. Results
 A significant sign of demyelination was 
evident in CPZ-treated animals, as revealed by 
LFB staining of the brain tissue (Figure 2). On the 
other hand, it was found that MB administration 
(0.5 and 1 mg/kg) dose-dependently decreased the 
number of demyelinated neurons in the corpus cal-
losum (CC) region of CPZ-treated mice (Figure 2).
 Animals locomotor activities were im-
paired in the mice model of MS (Figure 3). A sig-
nificant decrease in the open field activity, hind 
paw stride length, and time on the rotarod were 
detected in CPZ-treated mice (Figure 3). MB treat-
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ment (0.5 and 1 mg/kg) significantly improved the 
animals’ locomotor function in the CPZ group 
(Figure 3). The effects of MB on animals’ locomo-
tor activity was not dose-dependent (Figure 3).
 Impaired mitochondrial function, includ-

ing decreased mitochondrial dehydrogenases ac-
tivity, mitochondrial permeabilization, depleted 
mitochondrial ATP, and mitochondrial depolar-
ization, were evident in CPZ-treated mice (Figure 
4). It was found that MB treatment significantly 

 

Figure 2. Luxol fast blue (LFB) stain revealed myelinated neurons with dark blue (Yellow arrow) in the 
corpus callosum (CC) of the control group. Demyelination in the CC of C57BL/6 mice treated with cupri-
zone (Red circle). Significant changes in neurons demyelination was detected in MB-treated animals. CPZ: 
Cuprizone; MB: Methylene blue.
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prevented brain mitochondrial impairment in the 
current animal model of MS (Figure 4). The effects 
of MB on mitochondrial indices were not dose-de-
pendent in the current study (Figure 4).

4. Discussion
 MS is a neurodegenerative disease that se-
verely affects the patients’ quality of life. Hence, 
finding therapeutic options against this disease is 
of great clinical value. Several pharmacological 
targets, including the immune system and cel-
lular mitochondria, have been identified for the 
treatment of MS. In the current investigation, the 
effects of MB, a mitochondrion regulating com-
pound, have been evaluated in an animal model of 
MS. It was found that MB treatment (0.5 and 1 

mg/kg, oral, for 42 consecutive days) significantly 
impaired mitochondrial indices and enhanced ani-
mal locomotor activity in the MS mouse model.
 The role of mitochondrial impairment in 
the pathogenesis of other neurodegenerative dis-
eases such as Alzheimer’s disease and Parkinson-
ism has been widely investigated (86, 87). There is 
no precise mechanism for mitochondria-mediated 
ROS formation in MS (36, 88, 89). However, in-
flammatory response and mitochondrial impair-
ment might play a pivotal role in brain oxidative 
stress in MS patients. There is also a large body 
of evidence that mitochondrial impairment could 
play a pivotal role in the pathophysiology of the 
MS disease (90-92). It has been found that mito-
chondrial dysfunction plays a significant role in 

Figure 4. Mitochondrial indices in the whole brain mitochondria of multiple sclerosis (MS) mouse model. 
CPZ: Cuprizone; MB: Methylene blue. Data are represented as mean±SD (n=8). ***Indicate significantly 
different as compared with the CPZ-treated group (P<0.001).
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the release of cell death mediators and neuronal 
demyelination (88, 93-95). Mitochondria-facilitat-
ed ROS formation could damage several targets, 
including proteins, lipids, and mitochondrial DNA 
(mtDNA) (89, 93). A high level of mitochondrial 
ROS could lead to mutated mtDNA (89, 93). The 
enzymes for the repair of mitochondrial DNA are 
not as efficient as those for nuclear DNA. Hence, 
mtDNA is more prone to ROS damage. When the 
mutant mtDNA increase to a pivotal threshold, 
the symptoms of the mitochondria-related disease 
could occur (36, 88, 89). Damaged mtDNA could 
lead to deterioration in mitochondrial electron 
transport chain proteins synthesis, more ROS for-
mation, and decreased ATP production.
 Several studies also reported the impair-
ment in mitochondrial electron transport chain 
(ETC) components in the MS disease (92, 93, 96-
100). Decreased activity of complex I, III, and IV 
from the neurons in the different brain regions of 
MS models (92, 93, 96-100). Decreased activity 
of ETC could be directly related to mtDNA dam-
age induced by oxidative stress. The final result of 
this process is decreased ATP production in mito-
chondria. ATP plays a fundamental role in many 
physiological processes, such as neurotransmitter 
release and ion channel activity (22, 88). Hence, 
the mitochondrial energy crisis in neurons of MS 
patients could lead to severe complications. MB 
could affect the function of mitochondrial ETC 
components a which finally leads to a higher ATP 
level (38). 
 There are several lines of evidence that 
mention the interaction of MB with cellular mito-
chondria in different experimental models (2, 38, 
101-104). It has been found that MB (at low con-
centrations) significantly mitigated mitochondria-
mediated ROS formation (38). Cellular mitochon-
dria are the major sources of ROS (105, 106). A 
large amount of ROS is produced during the oxi-
dative phosphorylation process, which is counter-
acted by mitochondrial antioxidant systems (107, 
108). However, when the mitochondrial function 
is impaired or mitochondrial antioxidant capacity 
is overwhelmed (e.g., in MS disease), mitochon-
dria-facilitated ROS formation could damage this 
organelle and finally lead to cellular injury. 
 Interestingly, it has been mentioned that 

the antioxidant activity of MB is mediated through 
the interaction of this compound with the ETC 
(38). The cycling between the oxidized (MB) and 
reduced (leucomethylene blue; MBH2) forms of 
MB plays a vital role in its effects on mitigating 
mitochondria-mediated ROS formation (38). The 
complex I of the ETC use NADH to reduce oxi-
dized MB to reduced MBH2 (38). On the other 
hand, cytochrome c and complex IV of ETC ac-
cept an electron from MBH2 and re-oxidized it 
to MB (38). Therefore, some ETC complexes (II 
and III), which are involved in ROS production 
(e.g., superoxide anion formation) are bypassed. 
Therefore, this could be one of the most important 
mechanisms for the positive effects of low concen-
trations of MB on mitochondria-mediated ROS 
formation. The effects of MB on mitochondrial 
biogenesis is another important mechanism that 
could enhance cellular energy level and decrease 
cell injury in tissues fronted energy crisis (e.g., 
neuronal ATP deficit in MS disease) (109-111). 
As mentioned, some ETC components might have 
defected in MS disease (92, 93, 96-100). Hence, 
MB might help neurons and glia to produce more 
energy (ATP) and prevent an energy crisis in these 
cells. Some other studies revealed that MB could 
indirectly enhance cellular antioxidant defense 
mechanisms (109). This effect of MB could be 
mediated through the activation of the antioxidant 
enzymes gene expression (109). All these data 
mention the positive effects of MB on cellular mi-
tochondria and its important therapeutic potential 
in mitochondria-linked disorders.
 MB is widely investigated in central ner-
vous system (CNS) disorders as well as xenobi-
otics-induced CNS injury (112-116). The effects 
of MB on Alzheimer’s disease is one of the most 
investigated aspects of this compound on CNS 
diseases (22, 117-119). A formulation of MB even 
went under clinical trial (Rember™) for Alzheim-
er’s disease (1, 23). MB is also an FDA-approved 
drug for the treatment of methemoglobinemia 
(25). Hence, MB could be readily administered to 
patients.
 Although MS is a multifaceted neurode-
generative disease that several mechanisms are 
involved in its pathogenesis, mitochondrial im-
pairment seems to play a significant role in the 
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pathobiology of this disease. Hence, mitochon-
dria targeting could be a promising therapy for 
MS patients. In the current study, we found that 
MB administration prevented neuronal demyelin-
ation, mitochondria-mediated ROS formation, and 
improved locomotor activity. More investigations 
are warranted for the determination of the precise 
effects of MB on MS disease progression and the 
use of this phenothiazine compound in the man-
agement of neurological deficits in patients.
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