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Abstract
 Cirrhosis-associated muscle mass loss or sarcopenia is a common complication (17-30% preva-
lence) in cirrhotic patients. However, the pathogenesis of this complication is poorly understood. There-
fore, finding the mechanisms of sarcopenia could lead to the development of therapeutic strategies against 
this complication. In the current study, rats underwent bile duct ligation (BDL) surgery, and their skeletal 
muscle (gastrocnemius; GS) was isolated and assessed 28 and 56 days after BDL operation. Significant 
increase in biomarkers of oxidative stress, including reactive oxygen species (ROS) formation, lipid per-
oxidation, and increased oxidized glutathione (GSSG) levels were detected in the muscle of cirrhotic ani-
mals. Skeletal muscle tissue antioxidant capacity and reduced glutathione (GSH) were also significantly 
decreased in BDL rats. Moreover, deterioration of several mitochondrial indices, including mitochondrial 
depolarization, increased mitochondrial permeabilization, depleted ATP reservoirs, and decreased mito-
chondrial dehydrogenases activity, were evident in the GS isolated from cirrhotic rats. Based on these data, 
oxidative stress and mitochondrial impairment seem to play as primary mechanisms of cirrhosis-induced 
sarcopenia.
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1. Introduction
 Sarcopenia is a common complication in 
cirrhotic patients (1). Sarcopenia could severely 
affect patients' quality of life (1, 2). Moreover, this 
complication directly influences the outcome of 
other therapeutic interventions such as liver trans-
plantation in cirrhosis (1, 2). It has been found that 
the survival rate in cirrhotic patients with sarcope-
nia is lower than their non-sarcopenic counterparts 
(1, 2). Unfortunately, no specific therapeutic mo-
dality has been developed for cirrhosis-associated 
sarcopenia. The main reason for the lack of thera-

peutic intervention in cirrhosis-induced sarcopenia 
is connected with the poor understanding of the 
mechanism(s) of this complication.
 Malnutrition, hormonal and biochemi-
cal alterations, as well as circulating endotoxins, 
could contribute to the pathogenesis of sarcopenia 
in cirrhosis (3, 4). Perturbation in skeletal muscle 
protein synthesis and turnover is a hallmark of sar-
copenic muscle injury (3, 4). Enhanced proteolysis 
could lead to the loss of muscle mass in cirrhotic 
patients (4). Several mediators of the liver-muscle 
axis, including ammonia, testosterone, growth 
hormone, and lipopolysaccharides, have been pro-
posed to be involved in the pathogenesis of cirrho-
sis-associated sarcopenia (4). However, there is no 
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investigation on the role of mitochondrial impair-
ment in the pathogenesis of sarcopenia in cirrhotic 
models.
 Previous studies mentioned that bile duct 
ligation (BDL) could serve as a reliable animal 
model for investigating cirrhosis-induced sarcope-
nia (5). Muscle atrophy is adequately induced in 
this model (5). In the current study, BDL rats were 
used to evaluate the role of mitochondrial impair-
ment and oxidative stress in cirrhosis-induced sar-
copenia.
 Finding the mechanism(s) of skeletal 
muscle injury in cirrhosis could lead to the devel-
opment of novel therapeutic strategies against this 
complication. Therefore, the current study was de-
signed to evaluate the role of oxidative stress and 
mitochondrial impairment in the pathogenesis of 
cirrhosis-associated sarcopenia. Rats underwent 
BDL surgery to induce cirrhosis. Then, 28 and 56 
days after the BDL operation, the gastrocnemius 
muscle was isolated and assessed.

2. Material and Methods
2.1. Chemicals
 Trichloroacetic acid, 2′,7′ dichlorofluores-
cein diacetate (DCFH-DA), reduced glutathione 
(GSH), malondialdehyde, oxidized glutathione 
(GSSG), 3 (N-morpholino) propane sulfonic acid 
(MOPS), 3-[4,5dimethylthiazol-2-yl]-2,5-diphe-
nyltetrazolium bromide (MTT), sucrose, D-Man-
nitol, trypsin, fatty acid-free bovine serum albu-
min (BSA) fraction V, rhodamine123, Coomassie 
brilliant blue, 2, 4, 6-tripyridyl-s-triazine (TPTZ), 
glacial acetic acid, ferric chloride hexahydrate 
(FeCl3.6H2O), dithiothreitol (DTT), thiobarbituric 
acid, and 6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid (Trolox) were purchased from 
Sigma (Sigma-Aldrich, St. Louis, MO). Iodoace-
tic acid, ethylenediaminetetraacetic acid (EDTA), 
di-nitro fluoro benzene, 4-(2-hydroxyethyl)-1-pi-
perazineethanesulfonic acid (HEPES), meta-phos-
phoric acid, 2 Amino 2-hydroxymethyl-propane-1, 
3-diol-hydrochloride (Tris-HCl), and n-Butanol, 
were obtained from Merck (Darmstadt, Germany).

2.2. Animals
 Male Sprague-Dawley rats (n=18) weigh-
ing 200-250 g were obtained from Shiraz Univer-

sity of Medical Sciences, Shiraz, Iran. Animals 
were housed at the temperature of 23±1 ºC with 
40% relative humidity. Rats had free access to tap 
water and a commercial rodent pellet diet (Royan 
Feed®, Isfahan, Iran). All procedures were in ac-
cordance with the protocol for care and use of lab-
oratory animals and approved by the ethics com-
mittee at Shiraz University of Medical Sciences, 
Shiraz, Iran (94-01-36-10650).

2.3. Bile duct ligation surgery for cirrhosis induc-
tion and experimental setup
 Animals were anesthetized with a mix-
ture of ketamine (60 mg/kg, i.p) and xylazine (10 
mg/kg, i.p). A midline incision (2 cm) through the 
linea alba was made (6-8). The common bile duct 
was ligated and cut between ligatures. In sham-
operated animals, the bile duct was identified and 
manipulated without ligation (9, 10). The assess-
ment of serum biochemical measurements con-
firmed the occurrence of cholestasis in BDL rats 
(11, 12). Rats were allotted into three groups (n = 
6 in each group). At days 28 and 56, after BDL sur-
gery, animals were anesthetized (80 mg/kg, thio-
pental, i.p), and muscle (Gastrocnemius) samples 
were collected.

2.4. Plasma and muscle ammonia levels
 Plasma levels were measured with stan-
dard kits (13, 14). GS tissue extract was prepared 
for assessing the NH4+ levels (13, 14). For this 
purpose, samples (100 mg) of the GS muscle sam-
ples were dissected, homogenized, and deprotein-
ized in 3 mL of ice-cooled lysis solution (Trichlo-
roacetic acid, 6%, w/v, 4 °C). After centrifugation 
(17,000g, 5 min, 4 °C), the supernatant was col-
lected and neutralized with potassium carbonate 
(KHCO3; 2 mol/L, pH=7). Afterward, brain am-
monia content was measured using standard kits 
(13, 14).

2.5. Rotarod test
 Rats underwent four sessions of rotarod 
performance on a rotarod apparatus to assess 
muscle function and locomotor activity (15, 16). 
The speed of the rotarod was 10 rpm. Each rotarod 
session had three trials for each rat with 10 min  
interval. The time that rats stayed on the rotating 
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rod was recorded (15-17).

2.6. Reactive oxygen species (ROS) formation in 
skeletal muscle
 Reactive oxygen species (ROS) formation 
was estimated using 2′, 7′ dichlorofluorescein di-
acetate (DCF-DA) (10, 18-22). Briefly, tissue sam-
ples (200 mg) were homogenized in 5 mL of ice-
cooled Tris-HCl buffer (40 mM, pH=7.4). Then, 
samples of the tissue homogenate (100 µL) were 
treated with Tris-HCl buffer (1 mL) and DCF-DA 
(Final concentration 10 µM) (23-26). The mixture 
was incubated at 37 ºC (10 min, in the dark). Fi-
nally, the fluorescence intensity was assessed us-
ing a fluorimeter (FLUOstar Omega®, λexcit=485 
nm, and λemiss=525 nm) (9, 10, 27, 28).

2.7. Lipid peroxidation in skeletal muscle of cir-
rhotic animals
 The thiobarbituric acid reactive substances 
(TBARS) were measured in the GS tissue as an in-
dex of lipid peroxidation (10, 29-32). Briefly, 500 
µL of tissue homogenate (10% w/v in KCl, 1.15% 
w: v) was treated with 1 mL of thiobarbituric acid 
(0.375%, w: v), and 3 mL of phosphoric acid (1% 
w:v, pH=2) (33-36). Samples were mixed well and 
heated (100 °C) for 45 minutes. Then, 2 mL of n-
butanol was added, mixed well, and centrifuged 
(10000 g, 20 min) (37-42). Finally, the absorbance 
of developed color in the n-butanol phase (upper 
phase) was measured (λ=532 nm, EPOCH® plate 
reader, BioTek®, USA) (10, 13, 43-46).

2.8. Total antioxidant capacity of Gastrocnemius 
muscle
 Ferric reducing antioxidant power (FRAP) 
assay for the assessment of the GS total antioxi-
dant capacity in the sham-operated and cirrhotic 
animals (10, 47-49). Briefly, the working FRAP 
reagent was freshly-prepared by mixing 10 vol-
umes of 300 mM acetate buffer (pH=3.6), with 1 
volume of 10 mM TPTZ (in 40 mM HCl) and 1 
volume of 20 mM ferric chloride. Tissue was ho-
mogenized in an ice-cooled 250 mM Tris-HCl buf-
fer containing 200 mM sucrose and 5 mM DTT 
(pH=7.4) (33, 50-54). Afterward, 100 µL of tissue 
homogenate was added to 900 µL of the FRAP re-
agent. Samples were incubated in the dark (5 min 

at 37 ºC). Finally, the absorbance was measured 
using EPOCH® plate reader (λ=595 nm, BioTek®, 
USA) (10, 41, 55).

2.9. Protein carbonylation
 Protein carbonylation in the skeletal 
muscle of cirrhotic rats was assessed using dini-
trophenylhydrazine (DNPH) (56-58). Briefly, 200 
mg of the GS tissue was homogenized in 5 mL of 
the triton X-100 (0.1%. v:v)-containing phosphate 
buffer solution (pH=7.5). Tissue homogenate was 
centrifuged (700 g, 10 min, 4 ºC), and 500 µL of 
the resulting supernatant was treated with 300 µL 
of 10 mM DNPH (dissolved in HCl) (59). Sam-
ples were then incubated (1 h, 25 ºC, in the dark, 
with vortexing every 10 minutes) (56, 57, 60-62).
Then, 100 µL trichloroacetic acid (20% w:v) was 
added, tubes were centrifuged (17,000 g, 5 min), 
and the supernatant was discarded. Afterward, the 
pellet was washed three times, with ethanol: ethyl 
acetate (1 mL of 1:1 v:v), and the precipitate was 
re-dissolved in 6 M guanidine chloride solution 
(pH=2.3) (35). Finally, samples were centrifuged 
(17,000 g, 5 min), and absorbance of the superna-
tant was measured at λ=370 nm (EPOCH® plate 
reader, BioTek® Instruments, USA) (56-58).

2.10. Skeletal muscle mitochondria isolation
 Gastrocnemius was isolated, washed, and 
minced in an ice-cold buffer medium (70 mM man-
nitol, 220 mM sucrose, 2 mM HEPES, 0.5 mM 
EGTA and 0.1% BSA, pH=7.4). Minced tissue 
was transported into a fresh buffer (5 mL buffer/1g 
tissue) containing trypsin (0.1% w:v). Samples 
were incubated on ice (15 min). Then, samples 
were centrifuged (1000 g, 10 min, 4 °C), and the 
supernatant was discarded. The pellet was homog-
enized in fresh mitochondria isolation buffer (5 
mL buffer: 1g tissue). Mitochondria were isolated 
by differential centrifugation method as previously 
described (63-65). First, unbroken cells and nuclei 
were pelleted at 1000 g for 10 min at 4 ºC; second, 
the supernatant was centrifuged at 10000 g for 10 
min at 4 ºC to pellet the mitochondria. The second 
step was repeated at least four times using the fresh 
isolation buffer medium. Final mitochondrial pel-
lets were suspended in a buffer containing 70 mM 
mannitol, 2 mM HEPES, 220 mM sucrose, and 0.5 
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mM EGTA, pH=7.4, except for the mitochondria 
used to assess mitochondrial depolarization and 
mitochondrial swelling, which were suspended 
in depolarization assay buffer (220 mM Sucrose, 
68 mM Mannitol, 10 mM KCl, 2 mM MgCl2, 5 
mM KH2PO4, 50 μM EGTA, and 10 mM HEPES, 
pH=7.2) and swelling assay buffer (125 mM Su-
crose, 10 mM HEPES, and 65 mM KCl, pH=7.2) 
(63, 66). Samples protein content was determined 
by the Bradford method (67).

2.11. Mitochondrial dehydrogenase activity (MTT 
assay)
 3-(4, 5-dimethylthiazol-2-yl)-2, the 5-di-
phenyltetrazolium bromide (MTT) was used to 
estimate mitochondrial dehydrogenase activity in 
the GS (68-72). Briefly, a mitochondrial suspen-
sion (0.5 mg protein/ml) was treated with 40 µL 
of MTT (0.4% w:v) and incubated at 37 °C (30 
min, in the dark). Then, samples were centrifuged 
(10000 g, 20 min), and the product of purple 
formazan crystals (pellet) was dissolved in 1 mL 
dimethyl sulfoxide. Finally, the absorbance at 
λ=570 nm was assessed using an EPOCH plate 
reader (Bio-Tek® Instruments, USA) (28, 48, 73).

2.12. Mitochondrial depolarization
 The rhodamine 123 uptake by isolated 
GS mitochondria was used to estimate mitochon-
drial depolarization (10, 43, 63, 74). Briefly, the 
mitochondrial fractions (0.5 mg protein/ml) were 
incubated with 5 µM of rhodamine 123 in the  
depolarization assay buffer (Final concentration 
10 µM) for 10 minutes (21, 75-81). Then, sam-
ples were centrifuged (17,000 g, 1 min, 4 ºC), and  
the fluorescence intensity of the supernatant 
was measured using a fluorimeter (FLUOstar  
Omega®, λexcitation=485 nm and λemission=525 
nm) (63, 82, 83).

2.13. Mitochondrial swelling 
 The changes in light scattering at λ=540 
nm (25 °C) was used as a method to evaluate mi-
tochondrial swelling (63, 82, 84). Briefly, isolated 
mitochondria (0.5 mg/mL) were suspended in 
swelling buffer, and the absorbance was monitored 
at λ=540 nm (30 min, using an EPOCH plate read-
er; Bio-Tek® Instruments, USA) (70, 85-87). The 

decrease in sample absorbance is associated with 
an increase in mitochondrial swelling (63, 82, 88).

2.14. Mitochondrial and muscle tissue reduced 
(GSH) and oxidized (GSSG) glutathione
 Mitochondrial and tissue glutathione con-
tent (oxidized and reduced) was measured using 
an HPLC method based on a previously reported 
protocol (89). Briefly, isolated mitochondria (1 
mL, 1mg protein/mL) or homogenized GS tissue 
(1 mL of 10% w:v homogenate) were treated with 
100 µL of trichloroacetic acid (50 % w:v). Samples 
were incubated on ice (15 min) and centrifuged 
(17,0000 g, 30 min, 4 °C). The supernatant was 
collected in 5 mL tubes and treated with 300 µL of 
NaOH: Na2CO3 (2 M: 2 M solution). Afterward, 
100 µL of iodoacetic acid (15% w:v) was added 
and incubated at 4 °C for one hour. Then, 100 µL 
of dinitrofluorobenzene was added. Samples were 
mixed well and incubated in the dark (25 °C, 24 
h). Finally, samples were centrifuged (17000 g, 20 
min), filtered, and injected (25 µL) to an HPLC ap-
paratus. The HPLC system composed of an NH2 
column (Bischoff chromatography, Leonberg, 
Germany, 25 cm length, 10 µm particle size, 10 Å 
pore size), and a UV detector (λ=252 nm). A gra-
dient method using the mobile phases A (Water: 
Methanol; 1:4 v: v) and B (Acetate buffer: Buffer 
A; l; 1:4 v: v) was used (flow rate of 1 mL/min) 
(90, 91).

2.15. Lipid peroxidation in isolated mitochondria
 Thiobarbituric acid-reactive substances 
(TBARS) test was used for lipid peroxidation as-
say in isolated kidney mitochondria (63). As previ-
ous studies mentioned, sucrose interferes with the 
TBARS assay (63). Hence, isolated mitochondria 
were washed once in an ice-cooled MOPS-KCl 
buffer (50 mM MOPS and 100 mM KCl, pH=7.4). 
Afterward, GS isolated mitochondria prepara-
tions were re-suspended in MOPS-KCl buffer 
and used for the lipid peroxidation assay (63). 
For this purpose, the mitochondrial suspension (1 
mL) was added to 2 mL of a mixture containing 
trichloroacetic acid (15% w/v), thiobarbituric acid 
(0.375%), HCl (0.24 N), and Trolox (0.5 mM). 
Samples were heated for 15 min at 100 ºC (63). 
After centrifugation (17000 g, 10 min), the absor-
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bance was measured at λ=532 nm (EPOCH plate 
reader, BioTek® Instruments, USA) (63).

2.16. Mitochondrial ATP content
 Based on a previously reported procedure, 
GS mitochondrial ATP level was assessed using 
an HPLC (91, 92). Briefly, isolated GS mitochon-
dria (1 mg protein/mL) were treated with 100 µL 
of ice-cooled perchloric acid (200 mM), incubated 
on ice (5 min), and centrifuged (30 min, 17,000 
g, 4 ºC). Afterward, the supernatant (100 µL) was 
treated with its equivalent volume of ice-cooled 
KOH (1 M). Samples were filtered and injected 
(25 µL) into an HPLC system consisted of an LC-
18 column (µ-Bondapak, 15 cm) (93). The mobile 
phase was composed of tertiary butyl ammonium 
sulfate (2.3 mM), KH2PO4 (215 mM), KOH (1 M, 
0.4% w:v), and acetonitrile (4 % v:v). The flow 
rate was 1 mL/min, and the UV detector was set at 
λ=254 nm (94). 

2.17. Statistical analysis
 Data are represented as mean±SD. Data 
comparison was performed by the one-way  
analysis of variance (ANOVA) with Tukey's mul-
tiple comparison test as the post hoc. P<0.05 was 
considered a statistically significant difference.

3. Results
 A significant decrease in muscle mass 
index was evident in the GS muscle of cirrhotic 
animals (56 days after BDL surgery) (Figure 1). 
Animals locomotor activity and muscle function 
were also significantly declined in cholestatic rats 
(Figure 1). Moreover, significant changes in mus-
cle tissue, and plasma ammonia levels were evi-
dent in the cirrhotic rats (Figure 1).
 Significant changes in biomarkers of oxi-
dative stress were evident in the GS muscle iso-
lated from cirrhotic animals (Figure 2). ROS for-

Figure 1. Gastrocnemius muscle (GS) weight index, ammonia level, and rotarod test in bile duct ligated (BDL) rats. 
Data are given as mean±SD (n=6).
***Indicates significantly different as compared with the sham-operated group (P<0.05).
ns: not significant.
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mation, lipid peroxidation, increased GSSG levels, 
and protein carbonylation was detected in GS of 
cirrhotic rats (Figure 2). On the other hand, GS 
antioxidant capacity and GSH levels were signifi-
cantly decreased at 28 and 56 days after the BDL 
surgery (Figure 2). The development of oxidative 
stress in the GS tissue of cirrhotic rats was time-
dependent in the current study (Figure 2).
 Disturbances in mitochondrial function 
were evident in mitochondria isolated from GS of 
cirrhotic rats (Figure 3). Significant mitochondrial 
depolarization, mitochondrial permeabilization, 
depleted glutathione reservoirs, as well as ATP 
deprivation were detected in GS mitochondria of 
cirrhotic animals as assessed 28 and 56 days after 

BDL operation (Figure 3). It was found that GS 
mitochondrial function was time-dependently de-
teriorated in the current model (Figure 3).
 Histopathological evaluation of the GS re-
vealed significant muscle atrophy in comparison 
with the sham-operated group (Figure 4). Muscle 
atrophy in BDL rats was deteriorated in a time-
dependent manner (Figure 4). 

4. Discussion
 Sarcopenia is a frequent but mostly hidden 
complication of cirrhosis (1, 2). Muscle weakness 
and atrophy could significantly influence cirrhotic 
patients' quality of life (1, 2). Lower skeletal mus-
cle mass in cirrhosis also affects the response to 

Figure 2. Biomarkers of oxidative stress in the skeletal muscle of cirrhotic rats. BDL: Bile duct ligation.
Data are given as mean±SD (n=6).
***Indicates significantly different as compared with the sham-operated group (P<0.05).
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stressors, such as body infection and surgery (1, 2). 
Hence, finding the mechanisms of muscle weak-
ness and injury could lead to the development of 
novel therapeutic strategies in cirrhotic patients. 
In the current study, it was found that markers of 
oxidative stress were significantly increased in the 
GS muscle of cirrhotic rats. Moreover, several mi-
tochondrial indices were impaired in the skeletal 
muscle during cirrhosis. Based on these data, oxi-
dative stress and mitochondrial dysfunction play a 
fundamental role in cirrhosis-induced sarcopenia.
 The role of several cytotoxic molecules 
has been highlighted in the mechanism of sarco-
penia (1, 2). It has been mentioned that all these 
agents could act in an interconnected mechanism 

to induce muscle waste and sarcopenia (1, 2). Am-
monia is the primary suspected agent for inducing 
muscle mass loss and sarcopenia (4). The role of 
ammonium ion in sarcopenia has been extensively 
investigated (4). Neurotoxicity is a well-charac-
terized side effect of ammonia (95). Recently, it 
has been reported that this molecule is also able 
to induce adverse effects in tissues such as skel-
etal muscle (4). Following the entry of ammonia 
in the muscle, it activates a series of signaling 
mechanisms, which could lead to cytotoxicity and 
organ injury (4). It has been found that ammonia 
could induce impaired protein synthesis in the 
skeletal muscle during cirrhosis (4, 96). Ammonia 
causes the release of myostatin, which is involved 

Figure 3. Mitochondrial indices in the skeletal muscle of cirrhotic rats.
Data are represented as mean±SD (n = 6).
***Indicates significantly different as compared with the sham-operated group (P<0.05).
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in the inhibition of protein synthesis and enhanc-
ing proteolysis in skeletal muscle (4). It has been 
found that the expression and levels of myostatin 
are significantly increased in the skeletal muscle 
of cirrhotic patients (4). In the current study, we 
found that critical mitochondrial indices such as 
mitochondrial depolarization, mitochondrial per-
meabilization and swelling, tissue ATP levels, and 
mitochondrial dehydrogenases activity were sig-
nificantly decreased in the GS of cirrhotic rats. 
 Ammonia is able to disrupt mitochondrial 
function in different tissues such as the brain (95). 
It has been repeatedly mentioned that ammonia 
cause mitochondrial impairment in neural tissue 
(14, 97-101). Ammonia could also inhibit critical 
enzymes involved in energy (ATP) metabolism in 
the skeletal muscle (4). Our data from the current 
study revealed that similar perturbation could oc-
cur in the skeletal muscle of cirrhotic animals.
 Ammonia also could activate the myo-
statin protein (102, 103). It has been found that 
myostatin could decrease cellular ATP levels 

through different pathways (102, 103). It has been 
well-known that high skeletal muscle ammonia 
levels could significantly decrease α-ketoglutarate 
(104). This phenomenon is known as "cataplero-
sis" (104). Increase muscle ammonia could lead 
to the activation of a protein named "hypoxia-in-
ducible factor-alpha; HIF-α" (105).  Activation of 
HIF-α could lead to catastrophic events such as in-
creased myostatin levels, decreasing acetyl-CoA, 
and finally, skeletal muscle energy crisis (106). In 
the current study, we found that skeletal muscle 
energy (ATP) levels were significantly depleted in 
the GS of cirrhotic animals (Figure 3). Although it 
has not been evaluated in the current study, a part 
of ATP depletion in the muscle of cirrhotic rats 
could be connected with the HIF-α pathway.
 Cellular mitochondria are the primary 
sources of intracellular reactive oxygen species 
(ROS) (107). Therefore, oxidative stress and mi-
tochondrial impairment are two firmly-intercon-
nected events (107, 108). In the current study, we 
found that markers of oxidative stress were signifi-
cantly increased in the GS of cirrhotic rats (Figure 

Figure 4. Skeletal muscle histopathological alterations in cirrhotic rats. Significant muscle atrophy was detected in 
cirrhotic animals at different time intervals post-bile duct ligation (BDL) surgery.
Data are represented as mean±SD (n=6).
***Indicates significantly different as compared with the sham-operated group (P<0.05).
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2). Although more investigations are warranted to 
be precisely revealed, cellular mitochondria could 
act as a significant source of ROS in the GS tissue 
during cholestasis.
 Several therapeutic options have been 
suggested for managing cirrhosis-associated sar-
copenia (105, 109). Nutritional supplementation is 
the first approach for preventing skeletal muscle 
loss in cirrhotic patients (109, 110). Therefore, ad-
equate calorie and protein intake have been rec-
ommended in cirrhosis (109, 110). Although nu-
tritional supplementation could enhance muscle 
strength, there are some discrepancies about the 
effects of this strategy on cirrhotic patients' sur-
vival (110). It has been reported that nutritional 
supplementation might increase muscle mass and 
it's capacity in ammonia removal, glucose dispos-
al, and insulin response (110). However, the con-
tractile function of the skeletal muscle might not 
back to its average level (110). Protein supplemen-
tation and using ammonia lowering agents are the 
other recommended strategies for blunting cirrho-
sis-induced sarcopenia (4). However, the benefits 
of these strategies in improving cirrhotic patients' 
quality of life and survival have been questioned 
(4). Mild exercise also has been recommended 
for the cirrhotic patient to blunt muscle mass loss 
(111-113). The mechanism of exercise in improv-
ing cirrhotic patients' muscle strength might be 
associate with enhanced mitochondrial biogenesis 
in these patients (114). Mitochondria biogenesis 
could improve muscle energy (ATP) and power in 
cirrhotic patients (114). 
 Based on the data obtained from the cur-

rent study, mitochondrial impairment and energy 
crisis could play a pivotal role in the pathogenesis 
of cirrhosis-associated sarcopenia. Therefore, mi-
tochondria-targeted therapies could serve as a vi-
able option in enhancing muscle strength and the 
quality of life in cirrhotic patients. Several safe 
and clinically-applicable agents have been devel-
oped, which could robustly improve mitochon-
drial function. Our previous studies mentioned the 
positive effects of several amino acids, antioxidant 
molecules, and peptides on mitochondrial function 
and energy metabolism in various experimental 
models (8, 20, 47, 52, 70, 115-118). These safe 
agents might find therapeutic value in enhancing 
muscle strength during cirrhosis. Obviously, much 
more investigations are needed for identifying the 
precise mechanism(s) of muscle weakness in cir-
rhotic patients and evaluating antioxidants and 
mitochondria protecting agents as therapeutic op-
tions.
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