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Review Article

Abstract
 Nanofibrous meshes refer to the structures made of ultra-fine polymeric fibers. Because of nano-
meter measure size with an excessive strength/weight ratio, they are actual suitable as a nanosystem for 
delivering drug molecules. Drug molecules which mixed in nanofibers, can be released from the sur-
rounding environment by means of various mechanisms in different manners (burst release, sustainable 
release and tunable release). Nanofibers can be used by way of release rate controlling strategies as proper 
delivery structures for drug molecules.The objective of this review is to highpoint the capacity of nano-
fibers as novel releasing substances for profens (Propionic acid derivative drugs including Carprofen; 
Naproxen; Fenoprofen; Flurbiprofen; Ibuprofen; Ketoprofen and Tiaprofenic acid). The profens are a class 
of nonselective, nonsteroidal anti-inflammatory drugs (NSAIDs). These drug molecules are derivatives of 
2-phenylpropanoic acid. All contain a chiral center resulting in the formation of two enantiomers (R and 
S) of each profen. In this review, full information will be reported about the new progresses for release 
behaviors of profen molecules form the novel nanofibrous delivery systems. The drug releasing kinetics of 
profen molecules from nanofibers will be described briefly. The authors use more than 80 articles , books 
and thesis published in the case of nanofibrous profens delivery and releasing systems. 

Keywords: Nanofibers, Release characteristic, Propionic acid derivative drugs, Kinetic, Sustainable re-
lease..................................................................................................................................

1. Introduction
 In new periods, various investigators have 
paid more consideration to drug delivery systems 
(DDS), that have been established as a novel mean-
ing of releasing drug molecules by exact dose and 
suitable management (1). 
 Drug is a chemical substance that used 
in the treatment, cure, prevention or diagnosis of 
daises or used to otherwise enhance physical or 
mental wellbeing. Drugs extending from herbal 
extras, antibiotics and anticancers to proteins, 
DNA, RNA, living cells, several nanoparticles, 
nanotubes, nanorods and numerous growth factors 
which can be combined with nanofibers for pro-

ducing nanofibrous drug delivery systems (2). It 
will be hopeful in medical requests having great 
efficiency and care of drugs, and great agreement 
of patients. Numerous scientists have discovered 
the procedure of nanotechnology, explicitly nano-
fibers, as drug delivery systems for transdermal 
uses. Nanofibers can be used to deliver drugs and 
are capable of controlled release for a continued 
period of time (3).

2. Controlling the drug release from nanofibers
 The releasing of the drug from nanofi-
bers is principally via two mechanisms which are  
displayed in figure 1 (4).
 There are three chief styles for releasing 
trends of drug molecules from nanofibers that will 
be displayed in Figure 2 .
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 For the delivery of antibiotic drugs, a great 
initial burst is reflected a benefit since it is essen-
tial for eliminating the interfering bacteria previ-
ously they implore to proliferate. Furthermore, di-
rect incorporation of drug molecules in nanofibers 
might possibly cause undesired burst releasing. 
On the other hand, the drug release kinetics can 
be modified by means of the selecting of polymer 
and controlling over the nanofiber diameter, poros-
ity, geometry, and morphology with regulating the 
numerous processing variables during nanofibers 
production (6, 7). 
 Nanofibers can be used by way of release 
rate controlling strategies. Drug release from nano 
fibers could be because of desorption of drug from 
the surface layer, diffusion from pores and or ma-
trix degradation (8, 9). These all procedures of 
drug release are possible to get affected by select 
of inactive (polymer or other material), porosity, 
morphology, and geometry of nano fibers (10, 11). 

Usually smaller the diameter of nanofiber quicker 
the release rate is reflected from it based on the 
statement that reduced diameter fiber has ad-
vanced surface layer area and dissolution rate(12, 
13). Advanced conclusions recommended that 
drug release cannot be only run by means of diam-
eter and simultaneously influence of porosity is to 
be considered. It is repeatedly revealed that thicker 
nanofibers with very high porosity releasing drug 
quicker as compared to thinner fibers with low po-
rosity (14, 15). 

3. Analyzing of the drug releasing kinetics
 Drug molecules mixed in nanofibers can 
be released from the surrounding environment 
by means of a blend of various mechanisms (16). 
Drug molecules on the nanofibre surfaces can be 
dissolved and spread out of the nanofibers sheath 
as it is entered with body fluids. Elimination of 
molecule drugs on fiber surface regularly matches 

 

Figure 1. Mechanisms of controlling the drug release from nanofibers (5).

 

Figure 2. Release behaviors of drug molecules from nanofibers.
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to the burst phase of drug releasing. The amount 
of burst releasing might increase with the surface 
area on the nanofiber, so fibers with smaller fiber 
diameter or upper ratio of holes can have rapider 
burst release (17). 
 For the assessment of the drug releasing 
kinetics and the determining of the mechanism 
in nanofibers, generally some equations are used 
like:
 Peppas korsmeyer equation, 
 Semi empirical releasing(srikar) model, 
 Crank model, siepmann model, 
 Higuchi equation, 
 Siepmann and peppas model 
 Hopfenberg model (18, 19).

4. Drug related factors affecting drug releasing 
 Drug associated factors affecting its re-
leasing form nanofibers are listed in next para-
graphs (20).
 Drug loading 
Generally, higher drug loading is connected with 
the faster release (21). 
 Molecular weight of drug
Low molecular weight drugs are recognized for 
their fast release rate (22).
 Physical state of drug: The crystalline 
arrangement of the drug becomes deposited on 
nanofiber surface and offers burst release, whereas 
amorphous arrangement gets deposited deeper in-
side and get released in a sustained style (23, 24). 
 Solubility of drug: Drug―polymer inter-
actions.(Chemical or physical interactions) (25).

5. Nanofibers related factors affecting drug re-
leasing 
 Nanofibers related parameters affecting 
drug releasing form them are reported in next sec-
tion (26).
 Randomization of nanofibers aligment: 
Nanofiber alignment is a various factor recognized 
to mark drug release and generally randomized de-
sign is associated with quicker drug release owing 
to improved affinity of water uptake (27).
 Thickness of nanofibers: The releasing of 
drug molecules are in reverse associated with the 
fiber diameters. Higher fiber diameter enhances 
the space that drug molecules placed in the central 
of fibers which must diffuse from side to side for 
reaching the edge of the fiber . This mechanism 
extends release times (28, 29).
 Cristalinity of nanofibers 
 Porosity ratio of nanofibers: The porosity 
of nanofibers appears to affect the releasing pro-
cess. A greater porosity might increase the amount 
of fluid that absorbs to the nanofibers and there-
fore quicken the releasing. Nonetheless this result 
might have been repressed with other parameters 
like the amount of hydrophilicity of nanofibers. 
Also the size of pores and total volume of pores 
meaningfully influences the diffusion of the liquid 
which are absorbed on the nanofibers (30).
 Specific surface area of nanofibers: Upper 
specific surface area delivers a greater space for 
communication with the nearby fluid and resulting 
quicker releasing of drug molecules (31, 32). 
 Also the fabrication method of the nano-
fibers plays an important character in the drug re-

Figure 3. Propionic Acid Derivative Drugs (Profens) : General structures of R- and S-profens.( The chiral 
centers are shown*). 
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leasing procedure. 

6. Propionic Acid Derivative Drugs (Profens)
 The profens are a group of anti-inflamma-
tory drugs. They reduce pain, body temperature in 
fever, signs of inflammation, and, in mice, slow 
the development of cancers. The profens are de-
rivatives of 2-phenylpropanoic acid. All contain a 
chiral center resulting in the formation of two en-
antiomers (R and S) of each profen (Figure 3). The 
profens are accessible regularly as their racemates, 
viz., equal mixtures of the R and S stereoisomers 
(33). 
 There are a large number of profens avail-
able commercially including: Carprofen; Naprox-
en; Fenoprofen; Flurbiprofen; Ibuprofen; Keto-
profen; Tiaprofenic acid. In this review paper only 
some of them are investigated which are seen in 
Table 1 (34).

6. Release characteristics of propionic acid de-
rivative drugs (profens) from nanofibers
 In a novel work, PLGA/ibuprofen nanofi-
bers were electrospun into sandwich scaffolds. Ibu-
profen molecules have a tendency for aggregating 
on the surface layer of nanofibres, so initial burst 
releasing is occurred throughout implantation. But 
the sandwiched scaffolds were expected to delay 
the diffusion of ibuprofen into liquids and reduce 
the initial burst release. These scaffolds displayed 

meaningfully a reduced initial burst of ibuprofen 
releasing in the first hour (35). 
 Hyaluronic acid/ibuprofen nanofibers 
were fabricated with electrospinning method. Sus-
tained release of drug molecules from all nanof-
bers was detected throughout the initial day by 40-
60% of ibuprofen molecule releasing after first day 
(36). 
 Gliadin/ibuprofen nanofibers were pro-
duced. In vitro experiments confirmed that the gli-
adin nanofibers with heterogeneous drug dispersal 
had less preliminary burst ibuprofen release and 
an extended time period releasing of 16 hours, sig-
nifying an improved sustained drug release profile 
than those nanofibers having a homogeneous drug 
dispersal that had plain initial burst release and a 
shorter release time period of 8 hour. The various 
ibuprofen dispersals have operated the different 
release performances of the loaded ibuprofen mol-
ecules, and therefore caused the dissimilar drug 
sustained release profiles (37). 
 PLA/ibuprofen nanofibers holding 10, 
20, or 30 wt % drug were made. Two styles were 
seen while studying the release profiles. First, an 
increased temperature (37 °C) produced a superior 
release of ibuprofen from the nanofibers as com-
pared to room temperature. Second, the 30 wt % 
ibuprofen overloaded nanofibers at 37˚C manufac-
tured the highest ibuprofen release (~0.25 mg at 
336 hours). At both room temperature and 37 ˚C, 

Table 1. Chemical structures and physical/chemical properties of the studied profens (34).
Drug Structure IUPAC Name Mol. Mass, 

g/mol
Tm, 
˚C

pKa logP

Ibuprofen  Iso-butylphenylpropionic acid 206 78 4.9 4.0

Ketoprofen

 

2-(3-benzoylphenyl)- propanoic acid 254 94 3.9 3.1

Flurbiprofen

 

2-(3-fluoro-4-phenylphenyl)-propanoic acid 244 111 4.4 4.2

Naproxen

 

(2S)-2-(6-methoxynaphthalen-2-yl)-propanoic acid 230 155 4.2 3.3

Chamazulene 
carboxylic acid 

(1)

― A natural profen with anti-inflammatory activity and 
a degradation product of proazulenic sesquiterpene 

lactones, e.g., matricin.

― ― ― ―
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the results showed that a direct correlation occurred 
between ibuprofen concentration in the nanofibers 
and the quantity of ibuprofen released. PLGA/ibu-
profen nanofibrous were designed. The ibuprofen 
releasing mechanism is combined of degradation 
and diffusion. Practically 30% of loaded ibuprofen 
released in around 8 hours without any initial burst 
release and then 50% of entire ibuprofen has been 
released throughout only 4 hours (38). 
 Polyvinylpyrrolidone/ibuprofen nanofi-
brous mats were constructed by means of an elec-
trospinning method. The results specified that the 
ibuprofen molecules had respectable compatibility 
with the polymer and that ibuprofen was well dis-
persed in the nanofibers as an amorphous physical 
form (39). 
 Cellulose acetate/poly(vinyl pyrrolidone)/
ibuprofen nanofibers were produced. These nano-
fibers showed a 3 phase releasing profile, an ini-
tial burst release, a succulents decelerating release 
and a constant release. Throughout the burst re-
lease phase, over 28 wt% of ibuprofen molecules 
were diffused from nanofibers that were owing 
to the distribution of ibuprofen molecules on the 
great surface of the nanofibers. At the succedent 
decelerating release phase, ibuprofen molecules 
in the internal of nanofibers diffused onto nanofi-
bers surfaces. Through this procedure, ibuprofen 
molecules needed to overcome the Van der Waals’ 
force (or dispersion forces) produced between ibu-
profen molecules and polymer matrix that reduced 
ibuprofen diffuse rate. In the latest release phase, 
the small concentration difference of ibuprofen be-
tween receptor solution and nanofibers made the 
releasing of ibuprofen became more problematic 
(40). 
 PLLA/ibuprofen nanofibers which have 
small amount of Ag nanoparticles were fabricated. 
The in vitro drug releasing analysis indicated a sus-
tained release of Ag ions and ibuprofen molecules 
from the nanofibers. Throughout the first 2 days, 
burst releasing of ibuprofen from the nanofibers 
was 49.5%, followed by a sustained releasing in 
the following 10 days. Briefly, ibuprofen releasing 
performance depends chiefly on polymer matrix 
degradation, drug diffusion and Ag releasing (41).
 In another work, the Poly(N-isopro-
pylacrylamide)/Poly(ε-caprolactone)/ibuprofen 

nanofibers  were constructed with Tran et al. These 
nanofibers confirmed a variable and controlled re-
leasing at both room and higher temperature. The 
rate at 22 °C is 75% faster compared to that at 34 
°C. The results showed that 1 μmol of ibuprofen 
was rapidly released from these nanofibers in the 
first hour at 22 °C, and then the rest drug was re-
leased at a considerable slower rate, 0.05 μmol 
hr-1. Completely, 24% ibuprofen was released in 
four hours. In compare, ibuprofen was released 
at a more manageable style while the tempera-
ture was improved to 34 °C. The average release 
rate was ~0.2 μmol hr-1 and ~0.4 μmol ibuprofen 
was released in the first one hour. Only 17% ibu-
profen was released in 4 hours. This occurrence 
can be described with the great water solubility of 
Poly(N-isopropylacrylamide) when the tempera-
ture was below its LCST (32 °C), leading to the 
rapid ibuprofen releasing from the polymeric ma-
trix. Though, Poly(N-isopropylacrylamide) con-
verts greatly hydrophobic after temperature was 
above its LCST. Therefore Poly(N-isopropylacryl-
amide) functions similar a drug depot to forbid the 
rapid release of hydrophobic ibuprofen molecules, 
resulting in the comparatively more manageable 
release style (42). 
 In a different investigation, the PLLA/
PLGA/ibuprofen nanofibers were prepared. The 
outcomes of an in vitro ibuprofen releasing dis-
played a burst release throughout the first 2 days 
with high initial ibuprofen amount. This initial 
phase was followed by a sustained release stage 
from nanfibres during the subsequent 10 days (43). 
 PLA/ibuprofen nanofibers were created. 
Two tendencies were detected while examining 
the ibuprofen release profiles. In the first stage, an 
increased temperature (37 °C) produced a superior 
releasing of drug from the nanofibers as compared 
to room temperature. In the second stage, PLA/
ibuprofen (30%) nanofibers at 37 °C produced the 
maximum drug releasing. In both room tempera-
ture and 37 °C, the statistics recommended that a 
direct association be presented between ibuprofen 
amount in the nanofibers and the quantity of drug 
molecules released (44). 
 Cellulose acetate/Poly(vinylpyrrolidone)/
ibuprofen nanofibers were manufactured. These 
structures samples showed continued and steadily 
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Table 2. Drug release behaviors of profens from nanofibrous mats.
Material Content load Method In vitro study Ref

Ibuprofen release 

Burst release Sustained release

Cellulose acetate solved in 
acetone/DMAc

Naproxen 9.39% Mixing 40% (in 2.5 hours) 100% (in 25 hours) (48)

Polyvinylpyrrolidone solved in 
ethanol

ketoprofen Mixing 100% (in 4 minutes) --- (49)

Poly(vinyl alcohol) solved in 
deionized water

ketoprofen Mixing 58.43% (in 2 hours) 83.82% (in 14 days) (50)

Polyethylene oxide solved in 
methanol and water vapor; Silk 
and collagen solved in methanol 

and water vapor.

Polyethylene oxide containing 
Flurbiprofen   as sheath  with silk 
and collagen containing Vancomy-

cin   as core

Evaporation 
and coaxial 

process

33.1  μg/cm2 Flurbi-
profen (in 1 day)+9.0 
μg/cm2 Vancomycin 

(in 1 days)

72.2 μg/cm2 
Flurbiprofen (in 9 

days)+33.4 μg/cm2 
Vancomycin (in 17 

days)

(51)

Poly(N-vinylcaprolactam) 
solved in distilled water and 

ethanol

Ketoprofen 10% Mixing 84% (in 4 minutes) 
at 20˚C80% (in 4 
minutes) at 42˚C

98% (in 2 hours) 
at 20˚C100% (in 2 

hours) at 42˚C

(52)

Poly(vinyl pyrrolidone) solved 
in EtOH and DMF;Poly(lactic-

co-glycolic acid) solved in 
dichloromethane and DMF

Poly(lactic-co-glycolic acid) as 
sheath with Poly(vinyl pyrrol-

idone)  containing Flurbiprofen 6% 
as core 

Mixing 
and coaxial 

process

70% (in 24 hours) 85% (in 10 days) (53)

Chitosan and polyaniline solved 
in acetic acid

Ketoprofen Mixing 50% (in 24 hours) in 
pH~2

73% (in 4 days) in 
pH~2

(54)

70% (in 24 hours) in 
pH~6.7

90% (in 4 days) in 
pH~6.7

72% (in 24 hours) in 
pH~7.4

97% (in 4 days)  in 
pH~7.4

Poly(vinylpyrrolidone) and zein 
solved in ethanol and water

Ketoprofen Mixing and 
sequential 

process

32% (in 1 hour) 98% (in 16 hours) (55)

Chitosan solved in acetic acid 
and water;

Naproxen 5% Mixing 75% (in 10 minutes) 95% (in 4 hours) (56)

Polyacrylic acid solved in sodi-
um chloride and β-cyclodextrin;

25% (in 5 minutes) 30% (in 4 hours)

Poly(caprolactone) solved in 
acetic acid and formic acid

50% (in 2 minutes) 95% (in 4 hours)

Poly(vinyl alcohol) solved in 
water and phosphoric acid;

Naproxen 5% 25% (in 5 minutes) 38% (in 4 hours)

Naproxen 10% 40% (in 2 minutes) 48% (in 4 hours)

Naproxen 30% 50% (in 2 minutes) 70% (in 4 hours)

Poly(lactic-co-glycolic acid) 
solved in N,N-dimethylfor-
mamide and tetrahydrofuran

Ibuprofen 5% Mixing 23% (in 5 days) 80% (in 63 days) (57)

Polyvinylpyrrolidone and ethyl 
cellulose solved in ethanol

Naproxen 20% Mixing 30% (in 12 hours) 90% (in 3 days) (58)

Pulp cellulose added to melted 
[BMIM]Cl

Ibuprofen 2% Mixing and 
dry–wet 
process

48% (in 50 minutes) 
(irrespective of its 

content)

52% (in 8 hours) 
(irrespective of its 

content)

(59)

Ibuprofen 3%
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Aluminum oxide added to dis-
tilled water and 2-butanol

Ibuprofen 25% Sol–gel 68% (in 10 minutes) 70% (in 7 hours) (60)

Ibuprofen 50% 73% (in 10 minutes) 80% (in 7 hours)

Poly(vinylpyrrolidone) solved 
in ethanol

Ibuprofen 10% Pressurized 
Gyration

68% (in 10 minutes) 100% (in 10 hours) (61)

Gelatin solved in acetic 
acid+Poly(lactic acid) solved 

in chloroform +Hydroxyapatite 
solved in water

Ibuprofen 33.2% Mixing 30% (in 3 hours) 77±3.4(in 3 days) (62)

Ibuprofen 38.9% 30% (in 3 hours) 87.2±3.4% (in 3 days)

Ibuprofen 41.2% 35% (in 3 hours) 81.3±4.6%(in 3 days)

Ibuprofen 45.3% 40% (in 3 hours) 92.1±2.8%(in 3 days)

Ibuprofen 58.2% 50% (in 3 hours) 95.8±2.1%(in 3 days)

Poly(vinyl alcohol),Chitosan,ß-
cyclodextrins

Ibuprofen Supercriti-
cal carbon 
dioxide as-
sisted phase 

inversion

60% (in 3 hours) 90% (in 24 hours) (63)

Zein solved in methanoic acid Ibuprofen Blending 0.05 mg/ml-1 (in 90 
min)

--- (64)

Poly(lactic acid) solved in 
dimethylformamide and chlo-

roform

Ibuprofen 10% Mixing 0.05 mg (in 1 day) 0.07 mg (in 12 days) (44)

Ibuprofen 20% 0.11 mg (in 1 day) 0.13 mg (in 12 days)

Ibuprofen 30% 0.21 mg (in 1 day) 0.25 mg (in 12 days)

Cellulose Acetate solved in N,N-
dimethylacetamide and acetone

 Ibuprofen Mixing 7.7% (in 4 hours) --- (65)

Poly(caprolactone) solved in 
dichloromethyl and dimethyl 

formamide

Ibuprofen 10% Mixing 98% (in 2 hours) --- (66)

Poly(L-lactide) solved in dichlo-
romethane and N,N-dimethyl-

formamide

Ibuprofen 3.87 ± 0.31% Mixing 15% (in 2 hours) in 
pH~5

30% (in 2 days) in 
pH~5

(67)

10% (in 6 hours) in 
pH~7.4

20% (in 2 days) in 
pH~7.4

Silk suture immersed in normal 
saline

Ibuprofen Deposition 
on fila-

ments and 
immersion

0.75/µg cm-1 (in 4 
hours)

1.40/µg cm-1 (in 10 
days)

(68)

Poly(l-lactic acid) solved in 
dichloromethane and N, N-

dimethylformamide

Ibuprofen 3.91±0.22% Mixing 40% (in 6 days) 80% (in 35 days) (69)

Poly(lactide-coglycolide) solved 
in dichloromethane

Ibuprofen 10% Mixing 1.6 µ moles (in 1 
hour)

--- (70)

Cellulose Acetate solved in 
acetone/DMAc

Ibuprofen 7.1% Mixing 20% (in 1 hour) 80% (in 1 day) (71)

Poly(lactide-coglycolide) and 
poly(ethylene glycol)-g-chitosan 

solved in N,N-dimethylfor-
mamide

Ibuprofen 5% Mixing 22% (in 1 day ) 70% (in 16 days) (72)

Poly(lactide-coglycolide) solved 
in N,N-dimethylformamide

Ibuprofen 5% Mixing 45% (in 1 day ) 100% (in 12 days )

Poly(lactic-co-glycolic acid) 
solved in N,N-dimethylfor-
mamide and tetrahydrofuran

No load Mixing --- --- (57)

Ibuprofen 5% 25% (in 3 days) 80%(in 45 days)
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Poly(vinyl pyrrolidone) and 
Lysine solved in milli-Q water

Ibuprofen 5% Mixing 30% (in 1 day) in 
pH~5

45.09 ± 4.02% (in 1 
day) in pH~5

(73)

27.5% (in 1 day) in 
pH~8

29.17 ± 4.29% (in 1 
day) in pH ~8

Polyvinylpyrrolidone solved in 
ethanol

No load Mixing --- --- (39)

Ibuprofen 7.5%

Ibuprofen 15%

Cellulose acetate  and poly(vinyl 
pyrrolidone) solved in acetone 

and DMAc

 Ibuprofen 20%  Mixing  30% (in 1 hour)  95% (in 1 day) (40)

Gliadin solved in 
1,1,1,3,3,3-hexafluoro-2-propa-
nol and trifluoroacetic; Cellulose 

acetate solved in acetone and 
acetic acid

Cellulose acetate 0% Mixing 
and triaxial 

process; 
Mixing 

and coaxial 
process

34.2±4.5%(in1hour) 100% (in 2 days) 
(irrespective of its 

content)

(74)

Cellulose acetate 1% 8.3±4.6% (in 1 hour)

Cellulose acetate 3% 5.4 ±4.1 (in 1 hour)

Cellulose acetate 5% as sheath 
with gliadin containing Ibuprofen 

as core

2.7± 3.1% (in 1 hour)

Polyvinylpyrrolidone solved in 
distilled water

Ibuprofen 431.7 ± 39.7 µg/mL + 
145.5 ± 5.6 µg/mL acetylsalicylic 

acid

Mixing --- --- (75)

Ibuprofen 528.3 ± 24.7 µg/mL + 
168.3 ±7.3 µg/mL acetylsalicylic 

acid

Poly(caprolactone) solved in 
chloroform and acetone

Ibuprofen 9.1% Mixing 72% (in 1 hour) 100%  (in 5 days) 
(irrespective of its 

content) 

(46)

Ibuprofen 13% 95% (in 1 hour)

Ibuprofen 23.1% 87% (in 1 hour)

Ibuprofen 28.6% 80% (in 1 hour)

Ibuprofen 33.3% 83% (in 1 hour)

Ibuprofen 37.5% 68% (in 1 hour)

Poly(caprolactone) solved in 
dichloromethane and acetone

Ibuprofen 4.59% Mixing 73% (in 1 hour) 75% (in 1 day) (47)

Ibuprofen 2.29% 40% (in 1 hour) 80% (in 1 day)

Poly(l-lactic acid) solved in 
dichloromethane and N,N-

dimethlformamide

No load Mixing --- --- (41)

 Ag 4% 23.5% Ag (in 2 days) 48% Ag (in 10 days)

Ag 4%+ Ibuprofen 4% 49.5% Ibuprofen (in 
2 days)+32.7% Ag 

(in 2 days)

88% Ibuprofen (in 10 
days)+72% Ag (in 10 

days)

Ag 8% 35.9% Ag (in 2 days) 88% Ag (in 10 days)

Poly(lactic-co-glycolic acid)  
and Poly(caprolactone) solved 
in dichloromethane and N,N-

Dimethylformamide 

Ibuprofen 5% Mixing 75% (in 24 hours) 88% (in 13 days) (35)

Ibuprofen 10% 78% (in 24 hours) 90% (in 13 days)

Ibuprofen 15% 85% (in 24 hours) 96% (in 13 days)

Gliadin solved in 
1,1,1,3,3,3-hexafluoro-2-pro-

panol

Gliadin as sheath containing Ibu-
profen 6.25%

Mixing and 
traditional 
co-axial 
process

30% (in 2 hours) 95% (in 1 day) (37)

Ibuprofen 11.76% as core 35% (in 2 hours)

Poly(caprolactone) solved in 
dichloromethane and acetone

Ibuprofen 2% Mixing 40% (in 1 hour) 75% (in 1 day) (47)

Ibuprofen 5% 72% (in 1 hour) 90% (in 1 day)
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Poly(ethylene glycol)  and 
Poly(caprolactone) solved in 
dichloromethane and N,N-

Dimethylformamide

Poly(ethylene glycol) /
Poly(caprolactone) containing Ag 

as sheath  with hyaluronic acid 
containing Ibuprofen 0%

Mixing and 
core/shell 
process

50% Ibuprofen (in 8 
hours) (irrespective 
of its content)+80% 
hyaluronic acid (in 4 
days) +78-81% Ag 

(in 4 days)

50% Ibuprofen (in 21 
days) (irrespective 

of its content) +80% 
hyaluronic acid (in 17 
days) +19-22% Ag (in 

17 days)

(76)

Ibuprofen 10%

Ibuprofen 30%

Ibuprofen 50% as core

Hyaluronic Acid solved in 
formic acid

Ibuprofen 0% Mixing --- --- (36)

Ibuprofen 20% 58% (in 24 hours) 72% (in 20 days)

Ibuprofen 30% 52% (in 24 hours) 62% (in 20 days)

Ibuprofen 40% 41% (in 24 hours) 60% (in 20 days)

Poly (L-lactic acid) solved in 
dichloromethane

No load Mixing --- --- (77)

Ibuprofen 46% (in 12 hours) 54% (in 20 days)

Poly(L-lactic acid)/Polyethylene 
glycol solved in dichlorometh-

ane and acetone

Ibuprofen 0% Mixing --- --- (78)

Ibuprofen 2% 38% (in 2 days) 52% (in 18 days)

Ibuprofen 6% 47% (in 2 days) 48% (in 18 days)

Ibuprofen 10% 62% (in 2 days) 36% (in 18 days)

increasing release profiles (45). Polycaprolactone/
ibuprofen nanofibers were prepared with Potrcˇ et 
al (46). 
 The releasing of ibuprofen from the PCL 
nanofibers was fast, reaching about 96% of the 
overall ibuprofen release in the first 4 hours from 

the nanofibers. The drug release rates from the PCL 
nanofibers loaded with various quantities of ibu-
profen were not meaningfully different, represent-
ing that the changes in the nanofiber diameters and 
the surface morphology did not affect the release 
of the ibuprofen (46). A drug release test in vitro 

Table 3. Physical characteristics of profen loaded nanofibrous mats.
Profen loaded nanofibrous mats Ultimate stress(MPa) Ultimate strain(%) Young’s 

modulus(MPa)
Ref

Poly(vinylpyrrolidone) + zein+ ketopro-
fen

12 14 --- (55)

 Poly(lactic-co-glycolic acid) + Ibuprofen --- 140 --- (57)
Zein + Ibuprofen 0.6 99.7 --- (64)

Cellulose Acetate + Ibuprofen --- 34.36 --- (65)
Gelatin+Ibuprofen 0.8±0.1 --- 1.5-2.0 (79)

Hyaluronic Acid+ 20% Ibuprofen 0.63 ± 0.53 61.46 ± 11.42 9.42 ± 0.83 (36)
Hyaluronic Acid+ 30% Ibuprofen  0.94±0.89 81.22 ± 8.23 10.57 ± 0.84
Hyaluronic Acid+ 40% Ibuprofen  1.43±0.13 90.11 ± 8.75 14.16 ± 1.25

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)+ 5% Ibuprofen

2.6 165 --- (35)

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)+ 10% Ibuprofen

2.2 170 ---

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)+ 15% Ibuprofen

1.7 180 ---

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)

2.2 170 ---

Poly(lactic-co-glycolic acid)  + Ibuprofen 11.73±4.43 76.63±21.53 --- (38)
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showed that the release rate of ibuprofen and ke-
toprofen was slow in PCL nanofibers loaded with 
drug–layered double hydroxide nanoparticles. Af-
ter 5 days, only 44-48% of ibuprofen was released, 
whereas the release of ketoprofen was 20-25%. All 
nanofibers could release the drug after 5 days (47). 
 Release behavior of profens from nanofi-
brous drug delivery systems will be described in 

Table 2.

7. Physical aspects of profen loaded nanofi-
brous mats
 Phisycal properties of profen loaded nano-
fibrous mats will be reported in Table 3.

8. Structural characteristics of profen loaded 
nanofibrous meshes

Table 4. Structural characteristics of profen loaded nanofibrous mats.
Ibuprofen loaded nanostructure mats Sample thickness 

(nm)
Pore 

size(μm)
Weight 

(mg/cm2)
Poros-
ity(%)

Water 
contact 
angle(˚)

Density 
(g/cm3)

Degree 
of swell-
ing (%)

Ref

Cellulose Acetate + Naproxen 409.3 ± 152.5 --- --- --- --- --- --- (48)

Poly(ethylene glycole) + Silk + Collagen 
+ Flurbiprofen + Vancomycin

422 ± 74 --- --- --- --- --- --- (51)

Poly(lactic-co-glycolic acid) + Flurbi-
profen

942 --- --- --- 113 --- --- (53)

Poly(vinyl pyrrolidone) + Poly(lactic-co-
glycolic acid) + Flurbiprofen

286 --- --- --- 78 --- ---

Polyvinylpyrrolidone +Ethyl cellu-
lose+20% Naproxen 

409±89 --- --- --- --- --- --- (58)

Poly(vinylpyrrolidone) + 10% Ibuprofen 1500 --- --- --- --- --- ---

Poly(vinyl alcohol)+Chitosan+ß-
cyclodextrins+Ibuprofen

--- 0.7±0.3 --- 37±1 --- --- --- (63)

Zein + Ibuprofen 605.6 --- --- --- --- --- --- (64)

Poly(lactic acid) + Ibuprofen 30% 585.38±131.51 --- 0.69 --- --- --- --- (44)

Poly(lactic acid) + Ibuprofen 20% 478.31±167.61 --- 0.67 --- 87.9 --- ---

Poly(lactic acid) + Ibuprofen 10% 329.11±249.62 --- 0.428 --- --- --- ---

Cellulose Acetate + Ibuprofen 533.5 --- --- --- --- --- --- (65)

Poly(caprolactone) + Ibuprofen 10% 374 ± 89 --- --- --- --- --- --- (66)

Silk + Ibuprofen 290 ±27 --- --- --- --- --- --- (68)

Poly(L-lactide) + Ibuprofen 3.87 ± 0.31% 1420 --- --- --- --- --- --- (67)

Poly(l-lactic acid) + Ibuprofen 
3.91±0.22%

1350 ± 280 --- --- --- --- --- --- (69)

Hydroxypropyl-ß-cyclodextrin + Ibupro-
fen

180±95 --- --- --- --- --- --- (80)

Cellulose Acetate + Ibuprofen 7.1% 297 ± 14 --- --- --- --- --- 600% (71)

Hydroxyapatite+ Ibuprofen --- --- --- 85 --- 1.40 (79)

Poly(l-lactic acid)+Polyethylene glycol+ 
2%Ibuprofen

3.42 ± 0.36 73.2 ± 3.6 60.4±3.9 (35)

Poly(l-lactic acid)+Polyethylene glycol+ 
6%Ibuprofen

3.13 ± 0.38 65.7 ± 3.2 65.8 ±5.1

Poly(l-lactic acid)+Polyethylene 
glycol+10%Ibuprofen

2.89 ± 0.31 55.6 ± 4.2 69.3 ±4.6

Poly(lactic-co-glycolic acid) +Ibuprofen --- --- ---
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Poly(caprolactone)+Ibuprofen 9.1% 465± 88 --- --- --- --- --- --- (46)

Poly(caprolactone)+Ibuprofen 13% 454± 83 --- --- --- --- --- ---

Poly(caprolactone)+Ibuprofen 23.1% 593± 105 --- --- --- --- --- ---

Poly(caprolactone)+Ibuprofen 28.6% 568± 97 --- --- --- --- --- ---

Poly(caprolactone)+Ibuprofen 33.3% 582 ± 109 --- --- --- --- ---

Poly(caprolactone)+Ibuprofen 37.5% 686 ± 196 --- --- --- --- ---

Hyaluronic Acid+ 20% Ibuprofen  520 ±  16 --- --- --- --- --- (36)

Hyaluronic Acid+ 30% Ibuprofen   580 ±  17 --- --- --- --- ---

Hyaluronic Acid+ 40% Ibuprofen   630 ±  21  --- --- --- --- ---

Poly(l-lactic acid) 1020 ± 26 --- --- 131.3° ± 
3.1°

--- --- (41)

 Poly(l-lactic acid) + Ag 4% 1140 ± 24 --- --- 125.1° ± 
4.1°

--- ---

Poly(l-lactic acid) + Ag 4%+ Ibuprofen 
4%

1210 ± 37 --- --- 126.8° ± 
3.9°

--- ---

Poly(l-lactic acid) + Ag 8% 1180 ± 42 --- --- 118.4° ± 
2.7°

--- ---

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)+ 5% Ibuprofen

910±61 --- --- 133.5 --- --- (35)

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)+ 10% Ibuprofen

1150±59 --- --- 134.2 --- ---

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)+ 15% Ibuprofen

1150±59 --- --- 134.2 --- ---

Poly(lactic-co-glycolic acid) + 
Poly(caprolactone)

860±40 --- --- 135.9 --- ---

Cellulose acetate/Poly(vinylpyrrolidone)
+Ibuprofen

385 ± 58 --- --- --- --- --- (45)

Poly (lactic acid)  + 10% Ibuprofen 329.116 ± 249.62 --- --- --- --- --- (44)

Poly (lactic acid)  + 20% Ibuprofen 478.316 ± 
167.61

--- --- 116.3 --- ---

Poly (lactic acid)  + 30% Ibuprofen 585.386 ± 
131.51

--- --- ― --- ---

Poly (ε-caprolactone)+ 10% Ibuprofen 1733 --- --- ― --- --- (42)

Poly (ε-caprolactone)+Poly(N-
isopropylacrylamide)+Ibuprofen

551 --- --- ― --- ---

Poly(N-isopropylacrylamide)/ Ibuprofen 470 --- --- --- --- ---

Poly(l-lactic acid)+Polyethylene glycol+ 
2% Ibuprofen

1.40 ± 0.52 --- 67.5 ± 
5.8

119.5 ± 
3.1

--- ---

Poly(l-lactic acid)+Polyethylene glycol+ 
6% Ibuprofen

1.32 ± 0.67 --- 64.6 ± 
8.1

121.9 ± 
3.2

--- ---

Poly(l-lactic acid)+Polyethylene glycol+ 
10% Ibuprofen

1.25 ± 0.59 --- 61.6 ± 
5.3

123.7 ± 
2.6

--- ---

Poly(lactic-co-glycolic acid) + Ibuprofen 300±500 --- --- --- --- --- (38)
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 Structural properties of profen loaded 
nanofibrous mats will be reported in Table 4.

9. Kinetics of profen releasing from the nanofi-
brous webs
 Table 5 represented the regression coeffi-
cients of mathematical models fitted to the releas-
ing of profens from the nanofibrous mats.

10 .Conclusions and future perspectives
 This review has widely presented releas-

ing approaches of the propionic acid derivative 
drugs (profens) from nanofibrous drug delivery 
systems. Nanofibers can be used to deliver drugs, 
so as these ultra-fine structures are the novel ma-
terials that are capable as profen carriers in human 
body for numerous usages, for instance wound 
dressings. Moreover, they are appropriate for us-
ing in surgical sutures for pain reducing.

Conflict of Interest
 None declared.

Table 5. Suitable mathematical models fitted to the releasing of profen drugs from the nanofibrous webs.
Nanofibrous web Mathematical model Closeness of fit 

(R2)
Ref

Poly(ethylene glycole) + Silk + Collagen + Flurbiprofen + Vancomycin Wei-bull 0.99 (51)

Poly(N-vinylcaprolactam) + Ketoprofen Korshmeyer–Peppas 0.9695 (52)

Poly(lactic-co-glycolic acid) + Poly(vinyl pyrrolidone) + Flurbiprofen First order 0.9820 (53)

Chitosan + Polyaniline + Ketoprofen Zero order 0.606 (54)

0.550

0.502

First order 0.80

0.954

0.971

Higuchi 0.967

0.993

0.989

Hixson–Crowell 0.708

0.834

0.856

Korsmeyer–Peppas 0.982

0.992

0.980

Polyvinylpyrrolidone + Ethyl cellulose + 20% Naproxen 0.9935 (58)

Cellulose + 3% Ibuprofen 0.9388 (59)

Cellulose + 2% Ibuprofen 0.9906

Poly (lactic acid)+ 15 mg Ibuprofen  Korsmeyer–Peppas --- (81)

Poly (lactic acid)+ 10 mg Ibuprofen  Korsmeyer–Peppas 

Poly (lactic acid)+ 5 mg Ibuprofen  Korsmeyer–Peppas 

Poly(vinyl alcohol)+Chitason+Ibuprofen Korsmeyer–Peppas 0.96824 (82)

.................................................................................................................................
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