Exploring the impact of endogenous AHR ligand, 6-formylindole [3,2-b]carbazole (FICZ) on the microbiota-gut-brain axis in chronic stress-induced depression in rats

Document Type : Original Article

Authors

1 Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran.

2 Department of Microbiology, College of Sciences, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran

10.30476/tips.2024.102397.1238

Abstract

Aryl hydrocarbon receptor (AHR) is a nuclear receptor that mediates responses to environmental stimuli. The microbiome, influenced by factors such as nutrition, antibiotics, stress, and infection, plays a crucial role in mood, cognition, and mental health through the gut-brain axis. Chronic stress, known to impact both mental and physical health, is associated with depression onset, with social defeat being a potent stressor. This study investigates the effects of endogenous AHR ligands on the microbiota-gut-brain axis and behavioral changes in rats subjected to chronic stress. Male rats were divided into six groups: control, social defeat (SD), treatment with endogenous AHR ligand 6-formylindole [3,2-b]carbazole (FICZ) ± SD and treatment with tryptophan (TRP) ± SD. AHR ligands were administered weekly for one month, and fecal samples were collected for microbial analysis. Forced swimming and splash tests were used to assess depression behaviors. The results showed FICZ positively impacting depression-like behaviors, while chronic stress and depression correlated with decreased Lactobacillus species frequency, especially in the social defeat group. Further investigations are warranted to explore the impact of social defeat stress on microbial populations across other groups and other bacterial species.

Highlights

Afshin Mohammadi-Bardbori (Google Scholar)

Keywords


1.    Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18(3):207-50. doi: 10.1615/critreveukargeneexpr.v18.i3.20. PMID: 18540824; PMCID: PMC2583464.
2.    Hahn ME. The aryl hydrocarbon receptor: a comparative perspective. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Nov;121(1-3):23-53. doi: 10.1016/s0742-8413(98)10028-2. PMID: 9972449.
3.    Wincent E, Bengtsson J, Mohammadi Bardbori A, Alsberg T, Luecke S, Rannug U, Rannug A. Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4479-84. doi: 10.1073/pnas.1118467109. Epub 2012 Mar 5. PMID: 22392998; PMCID: PMC3311358.
4.    Keshavarzi M, Khoshnoud MJ, Ghaffarian Bahraman A, Mohammadi-Bardbori A. An Endogenous Ligand of Aryl Hydrocarbon Receptor 6-Formylindolo[3,2-b]Carbazole (FICZ) Is a Signaling Molecule in Neurogenesis of Adult Hippocampal Neurons. J Mol Neurosci. 2020 May;70(5):806-817. doi: 10.1007/s12031-020-01506-x. Epub 2020 Feb 10. PMID: 32040828.
5.    Neavin DR, Liu D, Ray B, Weinshilboum RM. The Role of the Aryl Hydrocarbon Receptor (AHR) in Immune and Inflammatory Diseases. Int J Mol Sci. 2018 Dec 3;19(12):3851. doi: 10.3390/ijms19123851. PMID: 30513921; PMCID: PMC6321643.
6.    Asadi Dolatabad F, Maghami S, Ekhtiyardar N, Maghsodlo S, Mohammadi-Bardbori A. All-trans retinoic acid modulates AHR signaling and its downstream target gene, CYP1A in human hepatoma cells. Trends in Pharmaceutical Sciences. 2022;8(3):127-34.
7.    Davani-Davari D, Dastgheib F, Akbarizadeh AR, Mohammadi-Bardbori A. Interaction of NADPH oxidase and aryl hydrocarbon receptor in melanogenesis by B16/F10 cell line. Ir J Physiol Pharmacol. 2018; 2 (2) :82-74
8.    Madison CA, Hillbrick L, Kuempel J, Albrecht GL, Landrock KK, Safe S, Chapkin RS, Eitan S. Intestinal epithelium aryl hydrocarbon receptor is involved in stress sensitivity and maintaining depressive symptoms. Behav Brain Res. 2023 Feb 25;440:114256. doi: 10.1016/j.bbr.2022.114256. Epub 2022 Dec 14. PMID: 36528169; PMCID: PMC9839636.
9.    Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M, Jugold M, Guillemin GJ, Miller CL, Lutz C, Radlwimmer B, Lehmann I, von Deimling A, Wick W, Platten M. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011 Oct 5;478(7368):197-203. doi: 10.1038/nature10491. PMID: 21976023.
10.    Juricek L, Coumoul X. The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci. 2018 Aug 24;19(9):2504. doi: 10.3390/ijms19092504. PMID: 30149528; PMCID: PMC6163841.
11.    Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019 Oct 1;99(4):1877-2013. doi: 10.1152/physrev.00018.2018. PMID: 31460832.
12.    Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013 May;36(5):305-12. doi: 10.1016/j.tins.2013.01.005. Epub 2013 Feb 4. PMID: 23384445.
13.    Wiley NC, Dinan TG, Ross RP, Stanton C, Clarke G, Cryan JF. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J Anim Sci. 2017 Jul;95(7):3225-3246. doi: 10.2527/jas.2016.1256. PMID: 28727115.
14.    Correia AS, Vale N. Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. Int J Mol Sci. 2022 Jul 31;23(15):8493. doi: 10.3390/ijms23158493. PMID: 35955633; PMCID: PMC9369076.
15.    Pompili M, Lionetto L, Curto M, Forte A, Erbuto D, Montebovi F, et al. Tryptophan and Kynurenine Metabolites: Are They Related to Depression? Neuropsychobiology. 2019;77(1):23-28. doi: 10.1159/000491604. Epub 2018 Aug 15. PMID: 30110684.
16.    Mohammadi H, Daryabor G, Ghaffarian Bahraman A, Keshavarzi M, Kalantar K, Mohammadi‐Bardbori A. Aryl hydrocarbon receptor engagement during redox alteration determines the fate of CD4+ T cells in C57BL/6 mice. J Biochem Mol Toxicol. 2021;35(8):e22821.
17.    Hilakivi-Clarke LA. Effects of tryptophan on depression and aggression in STZ-D mice. Diabetes. 1991 Dec;40(12):1598-602. doi: 10.2337/diab.40.12.1598. PMID: 1756900.
18.    Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav. 2013 Jun 13;118:227-39. doi: 10.1016/j.physbeh.2013.05.012. Epub 2013 May 14. PMID: 23685235; PMCID: PMC5609482.
19.    Reis-Silva TM, Sandini TM, Calefi AS, Orlando BCG, Moreira N, Lima APN, et al. Stress resilience evidenced by grooming behaviour and dopamine levels in male mice selected for high and low immobility using the tail suspension test. Eur J Neurosci. 2019 Sep;50(6):2942-2954. doi: 10.1111/ejn.14409. Epub 2019 Apr 23. PMID: 30888692.
20.    Yadav R, Puniya AK, Shukla P. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Front Microbiol. 2016 Oct 21;7:1683. doi: 10.3389/fmicb.2016.01683. PMID: 27818658; PMCID: PMC5073146.
21.    Nguyen LP, Bradfield CA. The search for endogenous activators of the aryl hydrocarbon receptor. Chem Res Toxicol. 2008 Jan;21(1):102-16. doi: 10.1021/tx7001965. Epub 2007 Dec 13. PMID: 18076143; PMCID: PMC2572005.
22.    Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med (Berl). 2023 Mar;101(3):201-222. doi: 10.1007/s00109-023-02289-5. Epub 2023 Feb 9. PMID: 36757399; PMCID: PMC10036442.
23.    Wincent E, Kubota A, Timme-Laragy A, Jönsson ME, Hahn ME, Stegeman JJ. Biological effects of 6-formylindolo[3,2-b]carbazole (FICZ) in vivo are enhanced by loss of CYP1A function in an Ahr2-dependent manner. Biochem Pharmacol. 2016 Jun 15;110-111:117-29. doi: 10.1016/j.bcp.2016.04.012. Epub 2016 Apr 22. PMID: 27112072; PMCID: PMC4887394.
24.    Patel D, Anilkumar S, Chattarji S, Buwalda B. Repeated social stress leads to contrasting patterns of structural plasticity in the amygdala and hippocampus. Behav Brain Res. 2018 Jul 16;347:314-324. doi: 10.1016/j.bbr.2018.03.034. Epub 2018 Mar 23. PMID: 29580891.
25.    Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci. 2018 Jul 28;19(8):2210. doi: 10.3390/ijms19082210. PMID: 30060580; PMCID: PMC6121494.
26.    Fukuda K. Etiological classification of depression based on the enzymes of tryptophan metabolism. BMC Psychiatry. 2014 Dec 24;14:372. doi: 10.1186/s12888-014-0372-y. PMID: 25540092; PMCID: PMC4321701.
27.    Muneer A. Kynurenine Pathway of Tryptophan Metabolism in Neuropsychiatric Disorders: Pathophysiologic and Therapeutic Considerations. Clin Psychopharmacol Neurosci. 2020 Nov 30;18(4):507-526. doi: 10.9758/cpn.2020.18.4.507. PMID: 33124585; PMCID: PMC7609208.
28.    Carlessi AS, Borba LA, Zugno AI, Quevedo J, Réus GZ. Gut microbiota-brain axis in depression: The role of neuroinflammation. Eur J Neurosci. 2021 Jan;53(1):222-235. doi: 10.1111/ejn.14631. Epub 2019 Dec 18. PMID: 31785168.
29.    Miura H, Ozaki N, Sawada M, Isobe K, Ohta T, Nagatsu T. A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress. 2008 May;11(3):198-209. doi: 10.1080/10253890701754068. PMID: 18465467.
30.    Réus GZ, Jansen K, Titus S, Carvalho AF, Gabbay V, Quevedo J. Kynurenine pathway dysfunction in the pathophysiology and treatment of depression: Evidences from animal and human studies. J Psychiatr Res. 2015 Sep;68:316-28. doi: 10.1016/j.jpsychires.2015.05.007. Epub 2015 May 19. PMID: 26028548; PMCID: PMC4955923.
31.    Zang X, Zheng X, Hou Y, Hu M, Wang H, Bao X, Zhou F, Wang G, Hao H. Regulation of proinflammatory monocyte activation by the kynurenine-AhR axis underlies immunometabolic control of depressive behavior in mice. FASEB J. 2018 Apr;32(4):1944-1956. doi: 10.1096/fj.201700853R. Epub 2018 Jan 5. PMID: 29183965.
32.    Liang S, Wu X, Hu X, Wang T, Jin F. Recognizing Depression from the Microbiota⁻Gut⁻Brain Axis. Int J Mol Sci. 2018 May 29;19(6):1592. doi: 10.3390/ijms19061592. PMID: 29843470; PMCID: PMC6032096.
33.    Sun X, Zhang HF, Ma CL, Wei H, Li BM, Luo J. Alleviation of Anxiety/Depressive-Like Behaviors and Improvement of Cognitive Functions by Lactobacillus plantarum WLPL04 in Chronically Stressed Mice. Can J Infect Dis Med Microbiol. 2021 Jan 30;2021:6613903. doi: 10.1155/2021/6613903. PMID: 33603935; PMCID: PMC7868149.
34.    Barros-Santos T, Silva KSO, Libarino-Santos M, Elisangela Gouveia Cata-Preta, Reis HS, Tamura EK, et al. Effects of chronic treatment with new strains of Lactobacillus plantarum on cognitive, anxiety- and depressive-like behaviors in male mice. PLoS One. 2020 Jun 19;15(6):e0234037. doi: 10.1371/journal.pone.0234037. PMID: 32559185; PMCID: PMC7304620.
35.    Chevalier G, Siopi E, Guenin-Macé L, Pascal M, Laval T, Rifflet A, et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat Commun. 2020 Dec 11;11(1):6363. doi: 10.1038/s41467-020-19931-2. PMID: 33311466; PMCID: PMC7732982.
36.    Galley JD, Nelson MC, Yu Z, Dowd SE, Walter J, Kumar PS, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC microbiol. 2014;14:1-13.