Mechanism of Interaction between Nanoparticles and the Body: Molecular, Cellular, and Tissular Levels – a review

Document Type : Review Article

Authors

1 Department of Pharmaceutics, R.L Jalappa College of Pharmacy, Sri Devaraj Urs Academy Higher Education and Research (a Deemed to be University), Tamaka, Kolar, India.

2 Department of Pharmacognosy, R.L Jalappa College of Pharmacy, Sri Devaraj Urs Academy Higher Education and Research (a Deemed to be University), Tamaka, Kolar, India.

3 Department of Pharmaceutical Chemistry, R.L Jalappa College of Pharmacy, Sri Devaraj Urs Academy Higher Education and Research (a Deemed to be University), Tamaka, Kolar, India.

10.30476/tips.2024.103004.1245

Abstract

Nanoparticles (NPs), ranging from 1 to 100 nanometers, exhibit unique properties that enable their use in medical applications such as drug delivery, diagnostics, and therapies. Their interactions with biological systems occur at molecular, cellular, and tissue levels, significantly influencing their behavior and efficacy. At the molecular level, NPs form a dynamic protein corona in biological fluids, affecting cellular uptake and biodistribution. NPs also interact with lipids and nucleic acids, impacting membrane integrity and gene delivery. Cellular uptake of NPs involves various endocytic pathways, influencing intracellular trafficking and potential cytotoxicity. Tissue-level interactions determine NP biodistribution, with accumulation in organs like the liver, spleen, and brain posing both therapeutic opportunities and safety concerns. Comprehensive studies on NP safety, biocompatibility, and regulatory guidelines are essential for advancing nanomedicine. This review delves into the mechanisms of these interactions, referencing key studies and highlighting their implications for the development of nanomedicine.

Highlights

Mohammed Khalid (Google Scholar)

Ashok Kumar BS (Google Scholar)

Keywords


1.    Pati R, Shevtsov M, Sonawane A. Nanoparticle Vaccines Against Infectious Diseases. Front Immunol. 2018 Oct 4;9:2224. doi: 10.3389/fimmu.2018.02224. PMID: 30337923; PMCID: PMC6180194.
2.    Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V. Time evolution of the nanoparticle protein corona. ACS Nano. 2010 Jul 27;4(7):3623-32. doi: 10.1021/nn901372t. PMID: 20553005.
3.    Mu Q, Jiang G, Chen L, Zhou H, Fourches D, Tropsha A, Yan B. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev. 2014 Aug 13;114(15):7740-81. doi: 10.1021/cr400295a. Epub 2014 Jun 13. PMID: 24927254; PMCID: PMC4578874.
4.    Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012 Dec;7(12):779-86. doi: 10.1038/nnano.2012.207. PMID: 23212421.
5.    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013 Jan;65(1):36-48. doi: 10.1016/j.addr.2012.09.037. Epub 2012 Oct 1. PMID: 23036225.
6.    Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol. 2007 Oct;25(10):1165-70. doi: 10.1038/nbt1340. Epub 2007 Sep 23. PMID: 17891134; PMCID: PMC2702539.
7.    Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater. 2013 Nov;12(11):967-77. doi: 10.1038/nmat3765. PMID: 24150415.
8.    Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016 Jun 16;534(7607):396-401. doi: 10.1038/nature18300. Epub 2016 Jun 1. PMID: 27281205.
9.    Zhao X, Ng S, Heng BC, Guo J, Ma L, Tan TT, Ng KW, Loo SC. Cytotoxicity of hydroxyapatite nanoparticles is shape and cell dependent. Arch Toxicol. 2013 Jun;87(6):1037-52. doi: 10.1007/s00204-012-0827-1. Epub 2012 Mar 14. PMID: 22415765.
10.    Oh N, Park JH. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine. 2014 May 6;9 Suppl 1(Suppl 1):51-63. doi: 10.2147/IJN.S26592. PMID: 24872703; PMCID: PMC4024976.
11.    Kim JA, Åberg C, Salvati A, Dawson KA. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat Nanotechnol. 2011 Nov 6;7(1):62-8. doi: 10.1038/nnano.2011.191. PMID: 22056728.
12.    Derfus AM, Chan WCW, Bhatia SN. Probing the Cytotoxicity Of Semiconductor Quantum Dots. Nano Lett. 2004 Jan 1;4(1):11-18. doi: 10.1021/nl0347334. Epub 2003 Dec 10. PMID: 28890669; PMCID: PMC5588688.
13.    Gao W, Wang Y, Xiong Y, Sun L, Wang L, Wang K, et al. Size-dependent anti-inflammatory activity of a peptide-gold nanoparticle hybrid in vitro and in a mouse model of acute lung injury. Acta Biomater. 2019 Feb;85:203-217. doi: 10.1016/j.actbio.2018.12.046. Epub 2018 Dec 28. PMID: 30597258; PMCID: PMC8960115.
14.    Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419-36. doi: 10.2165/00003088-200342050-00002. PMID: 12739982.
15.    Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001 Jun;53(2):283-318. PMID: 11356986.
16.    Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001 Mar 23;47(1):65-81. doi: 10.1016/s0169-409x(00)00122-8. PMID: 11251246.
17.    Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007 Aug;2(8):469-78. doi: 10.1038/nnano.2007.223. Epub 2007 Jul 29. PMID: 18654343.
18.    Alric C, Miladi I, Kryza D, Taleb J, Lux F, Bazzi R, et al. The biodistribution of gold nanoparticles designed for renal clearance. Nanoscale. 2013;5(13):5930-9.
19.    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002 Sep 13;54(5):631-51. doi: 10.1016/s0169-409x(02)00044-3. PMID: 12204596.
20.    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015 Sep;33(9):941-51. doi: 10.1038/nbt.3330. PMID: 26348965; PMCID: PMC4978509.
21.    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012 Jul 20;161(2):505-22. doi: 10.1016/j.jconrel.2012.01.043. Epub 2012 Feb 4. PMID: 22353619.
22.    Gillies ER, Fréchet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005 Jan 1;10(1):35-43. doi: 10.1016/S1359-6446(04)03276-3. PMID: 15676297.
23.    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994 Mar 18;263(5153):1600-3. doi: 10.1126/science.8128245. PMID: 8128245.
24.    Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14265-70. doi: 10.1073/pnas.0805135105. Epub 2008 Sep 22. PMID: 18809927; PMCID: PMC2567179.
25.    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004 Mar 19;303(5665):1818-22. doi: 10.1126/science.1095833. PMID: 15031496.
26.    Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2050-5. doi: 10.1073/pnas.0608582104. Epub 2007 Jan 31. PMID: 17267609; PMCID: PMC1892985.
27.    Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001 Mar 23;47(1):113-31. doi: 10.1016/s0169-409x(00)00124-1. PMID: 11251249.
28.    Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Deliv Rev. 1995;16(2-3):295-309.
29.    Matsumura Y, Kataoka K. Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci. 2009 Apr;100(4):572-9. doi: 10.1111/j.1349-7006.2009.01103.x. PMID: 19462526; PMCID: PMC11158079.
30.    Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010 Dec;27(12):2569-89. doi: 10.1007/s11095-010-0233-4. Epub 2010 Aug 20. PMID: 20725771; PMCID: PMC2982955.
31.    Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013 Feb;8(2):137-43. doi: 10.1038/nnano.2012.237. Epub 2013 Jan 20. PMID: 23334168.
32.    Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007 Jan;24(1):1-16. doi: 10.1007/s11095-006-9132-0. Epub 2006 Nov 16. PMID: 17109211.
33.    Fréchet JM. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science. 1994 Mar 25;263(5154):1710-5. doi: 10.1126/science.8134834. PMID: 8134834.
34.    Kobayashi H, Brechbiel MW. Dendrimer-based nanosized MRI contrast agents. Curr Pharm Biotechnol. 2004 Dec;5(6):539-49. doi: 10.2174/1389201043376571. PMID: 15579043.
35.    Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005 Jun 15;65(12):5317-24. doi: 10.1158/0008-5472.CAN-04-3921. PMID: 15958579.
36.    Lee CC, MacKay JA, Fréchet JM, Szoka FC. Designing dendrimers for biological applications. Nat Biotechnol. 2005 Dec;23(12):1517-26. doi: 10.1038/nbt1171. PMID: 16333296.
37.    Malik N, Evagorou EG, Duncan R. Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs. 1999 Sep;10(8):767-76. PMID: 10573209.
38.    Majoros IJ, Thomas TP, Mehta CB, Baker JR Jr. Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem. 2005 Sep 22;48(19):5892-9. doi: 10.1021/jm0401863. PMID: 16161993.
39.    Mecke A, Uppuluri S, Sassanella TM, Lee DK, Ramamoorthy A, Baker JR Jr, Orr BG, Banaszak Holl MM. Direct observation of lipid bilayer disruption by poly(amidoamine) dendrimers. Chem Phys Lipids. 2004 Nov;132(1):3-14. doi: 10.1016/j.chemphyslip.2004.09.001. PMID: 15530443.
40.    Patri AK, Majoros IJ, Baker JR. Dendritic polymer macromolecular carriers for drug delivery. Curr Opin Chem Biol. 2002 Aug;6(4):466-71. doi: 10.1016/s1367-5931(02)00347-2. PMID: 12133722.
41.    Tomalia DA, Reyna LA, Svenson S. Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Trans. 2007 Feb;35(Pt 1):61-7. doi: 10.1042/BST0350061. PMID: 17233602.
42.    Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006 Apr;6(4):662-8. doi: 10.1021/nl052396o. PMID: 16608261.
43.    Dykman LA, Khlebtsov NG. Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Naturae. 2011 Apr;3(2):34-55. PMID: 22649683; PMCID: PMC3347577.
44.    Avouris P, Chen Z, Perebeinos V. Carbon-based electronics. Nat Nanotechnol. 2007 Oct;2(10):605-15. doi: 10.1038/nnano.2007.300. Epub 2007 Sep 30. PMID: 18654384.
45.    Berber S, Kwon Y-K, Tománek D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys Rev Lett. 2000;84(20):4613-6.
46.    Cassell AM, Raymakers JA, Kong J, Dai H. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B. 1999;103(31):6484-92.