Recent findings in production and health benefits of prebiotics; a review of literatures

Document Type : Review Article

Authors

1 Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, Iran

2 M.D., Assistant Professor, Legal Medicine Research Center, Legal Medicine Organization of Iran, Tehran, Iran

3 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Abstract

Prebiotics are known as fermented ingredient with specific health benefits. The two main fermentative substrates of dietary origin are non-digestible carbohydrates and proteins which escape digestion in the small intestine. Beside traditional protocols for production of prebiotics, there are some commercial advanced methods for mass production of prebiotics with acceptable health effects. On the other hand, different types of nondigestible oligosaccharides (NDO) are used in the food and drug industries as functional foods and nutraceuticals due to their prebiotic effects and also immunomodulation effects (ex. SCFA modulate chemokine expression in intestinal epithelial cells). Prebiotics with novel and wide variety of health benefits deal with a bright future for improving society health.

Keywords


  1. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of nutrition. 1995;125(6):1401.
  2. Gibson GR, Probert HM, Van Loo J, Rastall RA, Roberfroid MB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition research reviews. 2004;17(02):259-75.
  3. Szkaradkiewicz AK, Karpiński TM. Probiotics and prebiotics. Journal of Biology and Earth Sciences. 2013;3(1):42-7.
  4. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiological reviews. 2001;81(3):1031-64.
  5. Lupton JR. Microbial degradation products influence colon cancer risk: the butyrate controversy. The Journal of nutrition. 2004;134(2):479-82.
  6. Mohkam M, Roshanfard F, Nezafat N, Gholami A, Y* G. Medium optimization, characterization and in-vitro evaluation of probiotic properties of Lactobacillus reuteri PTCC 1655 for supplementary purpose. Journal of Applied Pharmaceutical Science. 2017:in press.
  7. De Vuyst L, Moens F, Selak M, Riviere A, Leroy F. Summer Meeting 2013: growth and physiology of bifidobacteria. Journal of applied microbiology. 2014;116(3):477-91.
  8. Panesar PS, Kumari S, Panesar R. Biotechnological approaches for the production of prebiotics and their potential applications. Critical reviews in biotechnology. 2013;33(4):345-64.
  9. Wu Y, Yuan S, Chen S, Wu D, Chen J, Wu J. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Food chemistry. 2013;138(2):1588-95.
  10. Sen P, Bhattacharjee C, Bhattacharya P. Experimental studies and two-dimensional modelling of a packed bed bioreactor used for production of galacto-oligosaccharides (GOS) from milk whey. Bioprocess and biosystems engineering. 2016;39(3):361-80.
  11. Vera C, Guerrero C, Illanes A, Conejeros R. Fed‐batch synthesis of galacto‐oligosaccharides with Aspergillus oryzae β‐galactosidase using optimal control strategy. Biotechnology progress. 2014;30(1):59-67.
  12. Fai AEC, Simiqueli APR, Ghiselli G, Pastore GM. Sequential optimization approach for prebiotic galactooligosaccharides synthesis by Pseudozyma tsukubaensis and Pichia kluyveri. LWT-Food Science and Technology. 2015;63(2):1214-9.
  13. Srivastava A, Mishra S, Chand S. Transgalactosylation of lactose for synthesis of galacto-oligosaccharides using Kluyveromyces marxianus NCIM 3551. New biotechnology. 2015;32(4):412-8.
  14. Urrutia P, Mateo C, Guisan J, Wilson L, Illanes A. Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochemical engineering journal. 2013;77:41-8.
  15. Gonzalez-Delgado I, Lopez-Muñoz M-J, Morales G, Segura Y. Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. International Dairy Journal. 2016;61:211-9.
  16. Gobinath D, Prapulla SG. Permeabilized probiotic Lactobacillus plantarum as a source of β-galactosidase for the synthesis of prebiotic galactooligosaccharides. Biotechnology letters. 2014;36(1):153-7.
  17. Tokošova S, Hronska H, Rosenberg M. Production of high-content galacto-oligosaccharides mixture using β-galactosidase and Kluyveromyces marxianus entrapped in polyvinylalcohol gel. Chemical Papers. 2016;70(11):1445-51.
  18. Silverio SC, Macedo EA, Teixeira JA, Rodrigues LR. Perspectives on the biotechnological production and potential applications of lactosucrose: A review. Journal of Functional Foods. 2015;19:74-90.
  19. Mu W, Chen Q, Wang X, Zhang T, Jiang B. Current studies on physiological functions and biological production of lactosucrose. Applied microbiology and biotechnology. 2013;97(16):7073-80.
  20. Li W, Yu S, Zhang T, Jiang B, Stressler T, Fischer L, et al. Efficient Biosynthesis of Lactosucrose from Sucrose and Lactose by the Purified Recombinant Levansucrase from Leuconostoc mesenteroides B-512 FMC. Journal of agricultural and food chemistry. 2015;63(44):9755-63.
  21. Wu C, Zhang T, Mu W, Miao M, Jiang B. Biosynthesis of lactosylfructoside by an intracellular levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydrate research. 2015;401:122-6.
  22. Duarte LS, da Natividade Schöffer J, Lorenzoni ASG, Rodrigues RC, Rodrigues E, Hertz PF. A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase. Process Biochemistry. 2017.
  23. Sitanggang AB, Drews A, Kraume M. Continuous synthesis of lactulose in an enzymatic membrane reactor reduces lactulose secondary hydrolysis. Bioresource technology. 2014;167:108-15.
  24. Sitanggang AB, Drews A, Kraume M. Recent advances on prebiotic lactulose production. World Journal of Microbiology and Biotechnology. 2016;32(9):154.
  25. Khatami S, Ashtiani FZ, Bonakdarpour B, Mehrdad M. The enzymatic production of lactulose via transglycosylation in conventional and non-conventional media. International Dairy Journal. 2014;34(1):74-9.
  26. Wang H, Yang R, Hua X, Zhao W, Zhang W. Enzymatic production of lactulose and 1-lactulose: current state and perspectives. Applied microbiology and biotechnology. 2013;97(14):6167-80.
  27. Silverio SC, Macedo EA, Teixeira JA, Rodrigues LR. Biocatalytic Approaches Using Lactulose: End Product Compared with Substrate. Comprehensive Reviews in Food Science and Food Safety. 2016;15(5):878-96.
  28. Nobre C, Teixeira JA, Rodrigues LR. New trends and technological challenges in the industrial production and purification of fructo-oligosaccharides. Critical reviews in food science and nutrition. 2015;55(10):1444-55.
  29. Nobre C, Castro C, Hantson A-L, Teixeira J, De Weireld G, Rodrigues L. Strategies for the production of high-content fructo-oligosaccharides through the removal of small saccharides by co-culture or successive fermentation with yeast. Carbohydrate polymers. 2016;136:274-81.
  30. Wang D, Li F-L, Wang S-A. A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydrate Polymers. 2016;151:1220-6.
  31. Bhalla TC, Thakur N, Thakur N. Invertase of Saccharomyces cerevisiae SAA-612: Production, characterization and application in synthesis of fructo-oligosaccharides. LWT-Food Science and Technology. 2017;77:178-85.
  32. Bali V, Panesar PS, Bera MB, Panesar R. Fructo-oligosaccharides: production, purification and potential applications. Critical reviews in food science and nutrition. 2015;55(11):1475-90.
  33. Gimeno-Perez M, Linde D, Fernandez-Arrojo L, Plou FJ, Fernandez-Lobato M. Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Applied microbiology and biotechnology. 2015;99(8):3459-67.
  34. Mu W, Li W, Wang X, Zhang T, Jiang B. Current studies on sucrose isomerase and biological isomaltulose production using sucrose isomerase. Applied microbiology and biotechnology. 2014;98(15):6569-82.
  35. Wach W, Rose T. Optimized Method For Producing A Composition Containing Isomaltulose. Google Patents; 2014.
  36. Jung J-H, Kim M-J, Jeong W-S, Seo D-H, Ha S-J, Kim YW, et al. Characterization of divergent pseudo-sucrose isomerase from Azotobacter vinelandii: Deciphering the absence of sucrose isomerase activity. Biochemical and Biophysical Research Communications. 2016.
  37. Ghasemi Y, Rasoul-Amini S, Morowvat M. Algae for the production of SCP. Bioprocess Sciences and Technology: Nova Science Publishers, Inc. 2011:163-84.
  38. Nasseri A, Rasoul-Amini S, Morowvat M, Ghasemi Y. Single cell protein: production and process. American Journal of food technology. 2011;6(2):103-16.
  39. Martinez AO, Martinez dVME. Proteins and peptides in enteral nutrition. Nutricion hospitalaria. 2006;21:1-13, 1-4.
  40. Arvanitoyannis IS, Van Houwelingen-Koukaliaroglou M. Functional foods: a survey of health claims, pros and cons, and current legislation. Critical Reviews in Food Science and Nutrition. 2005;45(5):385-404.
  41. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. British Journal of Nutrition. 2010;104(S2):S1-S63.
  42. Bigliardi B, Galati F. Innovation trends in the food industry: the case of functional foods. Trends in Food Science & Technology. 2013;31(2):118-29.
  43. Shah N. Probiotics and prebiotics. Agro Food Industry Hi-Tech. 2004.
  44. Shen Q, Tuohy KM, Gibson GR, Ward R. In vitro measurement of the impact of human milk oligosaccharides on the faecal microbiota of weaned formula‐fed infants compared to a mixture of prebiotic fructooligosaccharides and galactooligosaccharides. Letters in applied microbiology. 2011;52(4):337-43.
  45. Swennen K, Courtin CM, Delcour JA. Non-digestible oligosaccharides with prebiotic properties. Critical reviews in food science and nutrition. 2006;46(6):459-71.
  46. Roberfroid MB. Introducing inulin-type fructans. British Journal of Nutrition. 2005;93(S1):S13-S25.
  47. Roberfroid MB. Inulin-type fructans: functional food ingredients. The Journal of nutrition. 2007;137(11):2493S-502S.
  48. Vogt L, Meyer D, Pullens G, Faas M, Smelt M, Venema K, et al. Immunological properties of inulin-type fructans. Critical reviews in food science and nutrition. 2015;55(3):414-36.
  49. Apolinario AC, de Lima Damasceno BPG, de Macêdo Beltrão NE, Pessoa A, Converti A, da Silva JA. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers. 2014;101:368-78.
  50. Leenen CH, Dieleman LA. Inulin and oligofructose in chronic inflammatory bowel disease. The Journal of nutrition. 2007;137(11):2572S-5S.
  51. Guarner F. Studies with inulin-type fructans on intestinal infections, permeability, and inflammation. The Journal of nutrition. 2007;137(11):2568S-71S.
  52. Arribas B, Rodriguez-Cabezas ME, Comalada M, Bailon E, Camuesco D, Olivares M, et al. Evaluation of the preventative effects exerted by Lactobacillus fermentum in an experimental model of septic shock induced in mice. British journal of nutrition. 2009;101(01):51-8.
  53. Besselink MG, van Santvoort HC, Buskens E, Boermeester MA, van Goor H, Timmerman HM, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. The Lancet. 2008;371(9613):651-9.
  54. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW. Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infection and immunity. 2006;74(12):6920-8.
  55. Zenhom M, Hyder A, de Vrese M, Heller KJ, Roeder T, Schrezenmeir J. Prebiotic oligosaccharides reduce proinflammatory cytokines in intestinal Caco-2 cells via activation of PPARγ and peptidoglycan recognition protein 3. The Journal of nutrition. 2011;141(5):971-7.
  56. Eiwegger T, Stahl B, Haidl P, Schmitt J, Boehm G, Dehlink E, et al. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatric Allergy and Immunology. 2010;21(8):1179-88.
  57. Shokryazdan P, Jahromi MF, Navidshad B, Liang JB. Effects of prebiotics on immune system and cytokine expression. Medical Microbiology and Immunology. 2016:1-9.
  58. Capitan‐Cañadas F, Ortega‐Gonzalez M, Guadix E, Zarzuelo A, Suarez MD, Medina FS, et al. Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR4. Molecular nutrition & food research. 2014;58(5):1098-110.
  59. Frei R, Akdis M, O’Mahony L. Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence. Current opinion in gastroenterology. 2015;31(2):153-8.
  60. Guerreiro I, Couto A, Machado M, Castro C, Pousão-Ferreira P, Oliva-Teles A, et al. Prebiotics effect on immune and hepatic oxidative status and gut morphology of white sea bream (Diplodus sargus). Fish & shellfish immunology. 2016;50:168-74.
  61. Moreno-Vilet L, Garcia-Hernandez M, Delgado-Portales R, Corral-Fernandez N, Cortez-Espinosa N, Ruiz-Cabrera M, et al. In vitro assessment of agave fructans (Agave salmiana) as prebiotics and immune system activators. International journal of biological macromolecules. 2014;63:181-7.
  62. Peshev D, Van den Ende W. Fructans: prebiotics and immunomodulators. Journal of Functional Foods. 2014;8:348-57.
  63. Ezeonu I, Asuquo A, Ukwah B, Ukoha P. IMMUNO-MODULATORY PROPERTIES OF PREBIOTICS EXTRACTED FROM vernonia amygdalina. African Journal of Traditional, Complementary & Alternative Medicines. 2016;13(6).
  64. Wagner RD. Effects of microbiota on GI health: gnotobiotic research. GI microbiota and regulation of the immune system: Springer; 2008. p. 41-56.
  65. Kelly D, King T, Aminov R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2007;622(1):58-69.
  66. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology. 2009;9(5):313-23.
  67. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677-89.
  68. Forchielli ML, Walker WA. The role of gut-associated lymphoid tissues and mucosal defence. British Journal of Nutrition. 2005;93(S1):S41-S8.
  69. Janardhana V, Broadway MM, Bruce MP, Lowenthal JW, Geier MS, Hughes RJ, et al. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. The Journal of nutrition. 2009;139(7):1404-9.
  70. Olsen R, Myklebust R, Kryvi H, Mayhew T, Ringø E. Damaging effect of dietary inulin on intestinal enterocytes in Arctic charr (Salvelinus alpinus L.). Aquaculture Research. 2001;32(11):931-4.
  71. Gourbeyre P, Denery S, Bodinier M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. Journal of leukocyte biology. 2011;89(5):685-95.
  72. Tazoe H, Otomo Y, Karaki S-i, Kato I, Fukami Y, Terasaki M, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomedical Research. 2009;30(3):149-56.
  73. Karaki S-i, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. Journal of molecular histology. 2008;39(2):135-42.
  74. Le Poul E, Loison C, Struyf S, Springael J-Y, Lannoy V, Decobecq M-E, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. Journal of Biological Chemistry. 2003;278(28):25481-9.
  75. Sanderson IR. Dietary modulation of GALT. The Journal of nutrition. 2007;137(11):2557S-62S.