1. Awang-Jamil Z, Aminuddin MF, Zaidi BQ, Basri AM, Ahmad N HT. Phytochemicals and antimicrobial analysis of selected medicinal plants from brunei darussalam. Biodivers J. 2021;22(2):601-6.
2. AstitiN PA, Ramona Y. GC-MS Analysis of Active and Applicable Compounds in Methanol Extract of Sweet Star Fruit (Averrhoa Carambola L.) Leaves. Hayati J Biosci. 2021:28(1):12, doi:10.4308/hjb.28.1.12.
3. Blench R. A history of fruits on the Southeast Asian mainland. Occas Pap. 2008;4:115–37.
4. Rohman RA, Maryanto SD, Sudania WM, Utomo C, Liwang T. Nitrogen uptake efficiency induced fumarate hydratase activity in oil palm seedlings. J protein proteomics. 2022;13:117–24.
5. Bumi MB, Heliawaty L, Hermawati E, Syah YM. Four limonoids from the seeds extract of Sandoricum koetjape. J Nat Med. 2019 Jun;73(3):641-647. doi: 10.1007/s11418-019-01303-w. Epub 2019 Apr 10. PMID: 30972689.
6. Saadah S, Tulandi SM. Phytochemical Screening and Total Phenolics of Stem and Leaf Extracts of Sandoricum Koetjape. J Agroindustri Halal. 2020;6(2):164-71. doi:10.30997/jah.v6i2.3156.
7. Saadah S, Tulandi SM, Rohman RA. Phytochemical and gas chromatography-mass spectrometry profiling of two plant parts of Sandoricum koetjape. Biodivers J. 2022;23(12):6199–207.
8. Hamzah FN, Subandi, Sujarwo W, Septama AW, Mozef T. Antioxidant and Xanthine Oxidase Inhibitory Activities of Kecapi (Sandoricum koetjape (Burm.f) Merr.) Leaf Extract. Mater Sci Eng. 2020;833(1):012012.
9. Wirata IN, Agung AAG, Arini NW, Nuratni NK. Sentul Fruit (Sandoricum koetjape) Peel as Anti-Inflammation for Gingivitis after Scaling. J Health Med Sci. 2021;4(4).
10. Wijaya MD. Ethnomedicinal, Phytochemicals, and Pharmacological Aspects of Sentul (Sandoricum koetjape). Biol Med Natural Prod. 2022;11(1):65-73. doi: 10.14421/biomedich.2022.111.65-73
11. Rasadah MA, Khozirah S, Aznie AA, Nik MM. Anti-inflammatory agents from Sandoricum koetjape Merr. Phytomedicine. 2004 Feb;11(2-3):261-3. doi: 10.1078/0944-7113-00339. PMID: 15070182.
12. Ismail IS, Ito H, Mukainaka T, Higashihara H, Enjo F, Tokuda H, et al. Ichthyotoxic and anticarcinogenic effects of triterpenoids from Sandoricum koetjape bark. Biol Pharm Bull. 2003 Sep;26(9):1351-3. doi: 10.1248/bpb.26.1351. PMID: 12951486.
13. Warsinah W, Kusumawati E, Sunarto S. Identification of Compound Antifungi of Sandoricum koetjape Stem and Activity to Candida albicans. Tra Med J [Internet]. 2015;16(3):170–8. Available from: https://journal.ugm.ac.id/TradMedJ/article/view/8055
14. Purnamasari V, Estiasih T, Sujuti H, Widjanarko SB. Identification of phenolic acids of Pandan anggur (Sararanga sinuosa Hemsley) fruits and their potential antiglycation through molecular docking study. J Appl Pharm Sci. 2021;11(2):126–34.
15. Holser RA. Principal Component Analysis of Phenolic Acid Spectra. Int Sch Res Notices. 2012;2012:1-5.
16. Mechchate H, Es-Safi I, Mohamed Al Kamaly O, Bousta D. Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches. Molecules. 2021 Mar 30;26(7):1932. doi: 10.3390/molecules26071932. PMID: 33808152; PMCID: PMC8037080.
17. Nassar ZD, Aisha AF, Ahamed MB, Ismail Z, Abu-Salah KM, Alrokayan SA, Abdul Majid AM. Antiangiogenic properties of Koetjapic acid, a natural triterpene isolated from Sandoricum koetjaoe Merr. Cancer Cell Int. 2011 Apr 27;11(1):12. doi: 10.1186/1475-2867-11-12. PMID: 21524294; PMCID: PMC3111336.
18. Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J Phytomed. 2019 Nov-Dec;9(6):574-586. doi: 10.22038/AJP.2019.13475. PMID: 31763216; PMCID: PMC6823530.
19. Pitaloka AA, NugrohoAP. Digital Transformation in Indonesia Health Care Services: Social, Ethical and Legal Issues. J STI Polic Manage. 2021;6(1):51-66.
20. Asrullah M, L'Hoir M, Feskens EJM, Melse-Boonstra A. Trend in age at menarche and its association with body weight, body mass index and non-communicable disease prevalence in Indonesia: evidence from the Indonesian Family Life Survey (IFLS). BMC Public Health. 2022 Mar 31;22(1):628. doi: 10.1186/s12889-022-12995-3. PMID: 35361192; PMCID: PMC8969286.
21. Hernandez-Anzaldo S, Brglez V, Hemmeryckx B, Leung D, Filep JG, Vance JE, et al. Novel Role for Matrix Metalloproteinase 9 in Modulation of Cholesterol Metabolism. J Am Heart Assoc. 2016 Sep 30;5(10):e004228. doi: 10.1161/JAHA.116.004228. PMID: 27694328; PMCID: PMC5121519.
22. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 2013 Nov;28(6):391-403. doi: 10.1152/physiol.00029.2013. PMID: 24186934; PMCID: PMC3858212.
23. Liu KC, Huang AC, Wu PP, Lin HY, Chueh FS, Yang JS, et al. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and -9 signaling pathways. Oncol Rep. 2011;26(1):177–84.
24. Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, et al. Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003 Feb 1;23(2):283-8. doi: 10.1161/01.atv.0000054195.35121.5e. PMID: 12588772.
25. Liu P, Sun M, Sader S. Matrix metalloproteinases in cardiovascular disease. Can J Cardiol. 2006 Feb;22 Suppl B(Suppl B):25B-30B. doi: 10.1016/s0828-282x(06)70983-7. PMID: 16498509; PMCID: PMC2780831.
26. Tandon A, Sinha S. Structural insights into the binding of MMP9 inhibitors. Bioinformation. 2011 Jan 22;5(8):310-4. doi: 10.6026/97320630005310. PMID: 21383916; PMCID: PMC3046033.
27. Jin UH, Lee JY, Kang SK, Kim JK, Park WH, Kim JG, et al. A phenolic compound, 5-caffeoylquinic acid (chlorogenic acid), is a new type and strong matrix metalloproteinase-9 inhibitor: isolation and identification from methanol extract of Euonymus alatus. Life Sci. 2005 Oct 14;77(22):2760-9. doi: 10.1016/j.lfs.2005.02.028. PMID: 16005473.
28. Liu Y, Wang F, Li Z, Mu Y, Yong VW, Xue M. Neuroprotective Effects of Chlorogenic Acid in a Mouse Model of Intracerebral Hemorrhage Associated with Reduced Extracellular Matrix Metalloproteinase Inducer. Biomolecules. 2022 Jul 22;12(8):1020. doi: 10.3390/biom12081020. PMID: 35892330; PMCID: PMC9332591.
29. Govindharaj D. Molecular Docking Analysis of Chlorogenic Acid Against Matrix Metalloproteinases ( MMPs ). Biointerface Res Appl Chem. 2020;10(6):6865–73.
30. Singh P, Singh A, Pandita D, Lather V. Synthesis and evaluation of a series of caffeic acid derivatives as anticancer agents. Futur J Pharm Sci. 2018;4(2):124–30.
31. Vilela Pd, de Oliveira JR, de Barros PP, Leão MV, de Oliveira LD, Jorge AO. In vitro effect of caffeic acid phenethyl ester on matrix metalloproteinases (MMP-1 and MMP-9) and their inhibitor (TIMP-1) in lipopolysaccharide-activated human monocytes. Arch Oral Biol. 2015 Sep;60(9):1196-202. doi: 10.1016/j.archoralbio.2015.04.009. Epub 2015 May 21. PMID: 26058005.
32. Kim SR, Jung YR, An HJ, Kim DH, Jang EJ, Choi YJ, et al. Anti-wrinkle and anti-inflammatory effects of active garlic components and the inhibition of MMPs via NF-κB signaling. PLoS One. 2013 Sep 16;8(9):e73877. doi: 10.1371/journal.pone.0073877. PMID: 24066081; PMCID: PMC3774756.
33. Behrangi N, Namvar N, Ataei M, Dizaji S, Javdani G, Sanati MH. MMP9 Gene Expression Variation by Ingesting Tart Cherry and P-Coumaric Acid During Remyelination in the Cuprizone Mouse Model. Acta Med Iran. 2017 Sep;55(9):539-549. PMID: 29202545.
34. Yuan Z, Zhang JP, Yang C. [Study on the effects of ferulic acid on the vascular smooth muscle cell migration in vitro]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2012 Feb;32(2):229-33. Chinese. PMID: 22574599.
35. Shah A, Amini-Nik S. The Role of Phytochemicals in the Inflammatory Phase of Wound Healing. Int J Mol Sci. 2017 May 16;18(5):1068. doi: 10.3390/ijms18051068. PMID: 28509885; PMCID: PMC5454978.
36. Jayabalan R, Malbaša R V., Lončar ES, Vitas JS, Sathishkumar M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf. 2014;13(4):538–50.
37. Damayanti, Prakoeswa CR, Purwanto DA, Endaryanto A, Siswandono. Molecullar Docking of Epigallocatechin-3-gallate (EGCG) on Keap1-Nrf2 Complex Protein in Photoaging Prevention. Medico-legal Update. 2020;20(3):439-45.
38. Melton L, Varelis P, Shahidi F. Encyclopedia of Food Chemistry. Elsevier. 2019;1951-1973.
39. Hossain SJ, Islam MR, Pervin T, Iftekharuzzaman M, Hamdi OAA, Mubassara S, et al. Antibacterial, Anti-Diarrhoeal, Analgesic, Cytotoxic Activities, and GC-MS Profiling of Sonneratia apetala (Buch.-Ham.) Seed. Prev Nutr Food Sci. 2017 Sep;22(3):157-165. doi: 10.3746/pnf.2017.22.3.157. Epub 2017 Sep 30. PMID: 29043212; PMCID: PMC5642796.
40. Bare Y, Kuki AD, Daeng Tiring SSN, Rophi AH, Krisnamurti GC, Tirto Sari DR. In Silico Study: Prediction the Potential of Caffeic Acid As ACE inhibitor. El-Hayah. 2020;7(3):94–8.
41. Nardini M, Foddai MS. Phenolics Profile and Antioxidant Activity of Special Beers. Molecules. 2020 May 26;25(11):2466. doi: 10.3390/molecules25112466. PMID: 32466403; PMCID: PMC7321254.
42. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000 Aug;130(8S Suppl):2073S-85S. doi: 10.1093/jn/130.8.2073S. PMID: 10917926.
43. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2000 Aug;130(8S Suppl):2073S-85S. doi: 10.1093/jn/130.8.2073S. PMID: 10917926.
44. Olszewska MA, Kwapisz A. Metabolite profiling and antioxidant activity of Prunus padus L. flowers and leaves. Nat Prod Res. 2011 Jul;25(12):1115-31. doi: 10.1080/14786410903230359. PMID: 21347973.
45. Abdelli I, Benariba N, Adjdir S, Fekhikher Z, Daoud I, Terki M, et al. In silico evaluation of phenolic compounds as inhibitors of Α-amylase and Α-glucosidase. J Biomol Struct Dyn. 2021 Feb;39(3):816-822. doi: 10.1080/07391102.2020.1718553. Epub 2020 Feb 10. PMID: 31955660.
46. Sabet R, Sisakht M, Emami L, Sabahi Z. Comparison of COVID-19 virus main protease inhibition activities of phenolic acids by molecular docking. Trends in Pharmaceutical Sciences. 2021; 7(2): 117-126. doi: 10.30476/tips.2021.90386.1083
47. Ekowati J, Diyah NW, Nofianti KA, Hamid IS, Siswandono. Molecular docking of ferulic acid derivatives on P2Y12 receptor and their ADMET prediction. J Math Fundam Sci. 2018;50(2):203–19.
48. Olivares-Morales A, Hatley OJ, Turner D, Galetin A, Aarons L, Rostami-Hodjegan A. The use of ROC analysis for the qualitative prediction of human oral bioavailability from animal data. Pharm Res. 2014 Mar;31(3):720-30. doi: 10.1007/s11095-013-1193-2. Epub 2013 Sep 27. PMID: 24072264; PMCID: PMC4250569.
49. Guan L, Yang H, Cai Y, Sun L, Di P, Li W, Liu G, Tang Y. ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. Medchemcomm. 2018 Nov 30;10(1):148-157. doi: 10.1039/c8md00472b. PMID: 30774861; PMCID: PMC6350845.
50. Bakhtyari NG, Raitano G, Benfenati E, Martin T, Young D. Comparison of in silico models for prediction of mutagenicity. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2013;31(1):45-66. doi: 10.1080/10590501.2013.763576. PMID: 23534394.
51. Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Nov;14(6):e1804. doi: 10.1002/wnan.1804. PMID: 36416020; PMCID: PMC9787548.
52. Freshney RI. Cytotoxicity. In Culture of Animal Cells, R.I. Freshney (Ed.). 2055;359–73
53. Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Interdiscip Toxicol. 2018 May;11(1):5-12. doi: 10.2478/intox-2018-0001. Epub 2018 Aug 6. PMID: 30181707; PMCID: PMC6117820.
54. Atale N, Mishra CB, Kohli S, Mongre RK, Prakash A, Kumari S, Yadav UCS, Jeon R, Rani V. Anti-inflammatory Effects of S. cumini Seed Extract on Gelatinase-B (MMP-9) Regulation against Hyperglycemic Cardiomyocyte Stress. Oxid Med Cell Longev. 2021 Mar 3;2021:8839479. doi: 10.1155/2021/8839479. PMID: 33747350; PMCID: PMC7953863.
55. Yano H, Nishimiya D, Kawaguchi Y, Tamura M, Hashimoto R. Discovery of potent and specific inhibitors targeting the active site of MMP-9 from the engineered SPINK2 library. PLoS One. 2020 Dec 29;15(12):e0244656. doi: 10.1371/journal.pone.0244656. PMID: 33373399; PMCID: PMC7771667.
56. Eckhard U, Huesgen PF, Schilling O, Bellac CL, Butler GS, Cox JH, et al. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biol. 2016 Jan;49:37-60. doi: 10.1016/j.matbio.2015.09.003. Epub 2015 Sep 25. PMID: 26407638.
57. Rudra DS, Pal U, Maiti NC, Reiter RJ, Swarnakar S. Melatonin inhibits matrix metalloproteinase-9 activity by binding to its active site. J Pineal Res. 2013 May;54(4):398-405. doi: 10.1111/jpi.12034. Epub 2013 Jan 17. PMID: 23330737.